Classification naïve bayésiennevignette|Exemple de classification naïve bayésienne pour un ensemble de données dont le nombre augmente avec le temps. La classification naïve bayésienne est un type de classification bayésienne probabiliste simple basée sur le théorème de Bayes avec une forte indépendance (dite naïve) des hypothèses. Elle met en œuvre un classifieur bayésien naïf, ou classifieur naïf de Bayes, appartenant à la famille des classifieurs linéaires. Un terme plus approprié pour le modèle probabiliste sous-jacent pourrait être « modèle à caractéristiques statistiquement indépendantes ».
Appareil mobilethumb|Exemple d'un appareil mobile. Un appareil mobile (traduction littérale du terme anglophone « mobile device ») est un appareil informatique portatif utilisable de manière autonome lors d'un déplacement. Les appareils mobiles sont de petite taille — certains peuvent être mis dans les poches. Ils sont typiquement dérivés des téléphones mobiles, et permettent d'accéder au Web, de lire du courrier électronique, de prendre des photos, de jouer à des jeux vidéo, d'écouter de la musique, de regarder des clips vidéo ou bien de télécharger des applications.
Système de classeursUn système de classeurs (Learning Classifier System ou LCS en anglais) est un système d'apprentissage automatique utilisant l'apprentissage par renforcement et les algorithmes génétiques. Ils ont été introduits par Holland en 1977 et développé par Goldberg en 1989 Un système de classeurs (aussi appelé classifiers) est composé d'une base de règles, appelée classeur, associés à un poids. Chaque règle est composée d'une partie condition et d'une partie action. Le classeur commence par être initialisé (aléatoirement ou non).
Feature (machine learning)In machine learning and pattern recognition, a feature is an individual measurable property or characteristic of a phenomenon. Choosing informative, discriminating and independent features is a crucial element of effective algorithms in pattern recognition, classification and regression. Features are usually numeric, but structural features such as strings and graphs are used in syntactic pattern recognition. The concept of "feature" is related to that of explanatory variable used in statistical techniques such as linear regression.
Dispositif intelligentUn appareil intelligent (aussi appelé dispositif intelligent ; en anglais, smart device) est un appareil électronique, généralement connecté à d'autres appareils ou réseaux via différents protocoles de communication sans fil tels que Bluetooth, Zigbee, NFC, Wi-Fi, LiFi, 5G, etc., qui peut fonctionner dans une certaine mesure de manière interactive et autonome.
Surapprentissagevignette|300x300px|La ligne verte représente un modèle surappris et la ligne noire représente un modèle régulier. La ligne verte classifie trop parfaitement les données d'entrainement, elle généralise mal et donnera de mauvaises prévisions futures avec de nouvelles données. Le modèle vert est donc finalement moins bon que le noir. En statistique, le surapprentissage, ou sur-ajustement, ou encore surinterprétation (en anglais « overfitting »), est une analyse statistique qui correspond trop précisément à une collection particulière d'un ensemble de données.
Transformée de Fourier quantiqueEn informatique quantique, la transformée de Fourier quantique (TFQ) est une transformation linéaire sur des bits quantiques, et est l'analogie quantique de la transformée de Fourier discrète. La transformée de Fourier quantique est l'un des nombreux algorithmes quantiques, qui incluent notamment l'algorithme de Shor qui permet de factoriser et de calculer le logarithme discret, l'algorithme d'estimation de phase quantique qui estime les valeurs propres d'un opérateur unitaire et les algorithmes traitant du problème de sous-groupe caché .
Réseau informatiquethumb|upright|Connecteurs RJ-45 servant à la connexion des réseaux informatiques via Ethernet. thumb|upright Un réseau informatique ( ou DCN) est un ensemble d'équipements reliés entre eux pour échanger des informations. Par analogie avec un (un réseau est un « petit rets », c'est-à-dire un petit filet), on appelle nœud l'extrémité d'une connexion, qui peut être une intersection de plusieurs connexions ou équipements (un ordinateur, un routeur, un concentrateur, un commutateur).
Apprentissage superviséL'apprentissage supervisé (supervised learning en anglais) est une tâche d'apprentissage automatique consistant à apprendre une fonction de prédiction à partir d'exemples annotés, au contraire de l'apprentissage non supervisé. On distingue les problèmes de régression des problèmes de classement. Ainsi, on considère que les problèmes de prédiction d'une variable quantitative sont des problèmes de régression tandis que les problèmes de prédiction d'une variable qualitative sont des problèmes de classification.
Generalization errorFor supervised learning applications in machine learning and statistical learning theory, generalization error (also known as the out-of-sample error or the risk) is a measure of how accurately an algorithm is able to predict outcome values for previously unseen data. Because learning algorithms are evaluated on finite samples, the evaluation of a learning algorithm may be sensitive to sampling error. As a result, measurements of prediction error on the current data may not provide much information about predictive ability on new data.