Matrix ringIn abstract algebra, a matrix ring is a set of matrices with entries in a ring R that form a ring under matrix addition and matrix multiplication . The set of all n × n matrices with entries in R is a matrix ring denoted Mn(R) (alternative notations: Matn(R) and Rn×n). Some sets of infinite matrices form infinite matrix rings. Any subring of a matrix ring is a matrix ring. Over a rng, one can form matrix rngs. When R is a commutative ring, the matrix ring Mn(R) is an associative algebra over R, and may be called a matrix algebra.
Liste d'adjacencethumb|Pour chaque sommet, la liste d'adjacence est représentée en jaune. En algorithmique, une liste d'adjacence est une structure de données utilisée pour représenter un graphe. Cette représentation est particulièrement adaptée aux graphes creux (c'est-à-dire peu denses), contrairement à la matrice d'adjacence adaptée aux graphes denses. La liste d'adjacence d'un graphe non orienté, est la liste des voisins de chaque sommet. Celle d'un graphe orienté est typiquement, pour chaque sommet, la liste de nœuds à la tête de chaque arête ayant le sommet comme queue.
Woodbury matrix identityIn mathematics (specifically linear algebra), the Woodbury matrix identity, named after Max A. Woodbury, says that the inverse of a rank-k correction of some matrix can be computed by doing a rank-k correction to the inverse of the original matrix. Alternative names for this formula are the matrix inversion lemma, Sherman–Morrison–Woodbury formula or just Woodbury formula. However, the identity appeared in several papers before the Woodbury report.
Matrice de HadamardUne matrice de Hadamard est une matrice carrée dont les coefficients sont tous 1 ou –1 et dont les lignes sont toutes orthogonales entre elles. Le nom retenu pour ces matrices rend hommage au mathématicien français Jacques Hadamard. Des exemples de telles matrices avaient été donnés par James Joseph Sylvester. Pour une matrice d'ordre , la propriété d'orthogonalité des colonnes peut également s'écrire sous la forme où In est la matrice identité d'ordre et t est la matrice transposée de .
Forbidden graph characterizationIn graph theory, a branch of mathematics, many important families of graphs can be described by a finite set of individual graphs that do not belong to the family and further exclude all graphs from the family which contain any of these forbidden graphs as (induced) subgraph or minor. A prototypical example of this phenomenon is Kuratowski's theorem, which states that a graph is planar (can be drawn without crossings in the plane) if and only if it does not contain either of two forbidden graphs, the complete graph K_5 and the complete bipartite graph K_3,3.
Line graphEn théorie des graphes, le line graph L(G) d'un graphe non orienté G, est un graphe qui représente la relation d'adjacence entre les arêtes de G. Le nom line graph vient d'un article de Harary et Norman publié en 1960. La même construction avait cependant déjà été utilisée par Whitney en 1932 et Krausz en 1943. Il est également appelé graphe adjoint. Un des premiers et des plus importants théorèmes sur les line graphs est énoncé par Hassler Whitney en 1932, qui prouve qu'en dehors d'un unique cas exceptionnel, la structure de G peut être entièrement retrouvée à partir de L(G) dans le cas des graphes connexes.
Algorithmethumb|Algorithme de découpe d'un polygone quelconque en triangles (triangulation). Un algorithme est une suite finie et non ambiguë d'instructions et d’opérations permettant de résoudre une classe de problèmes. Le domaine qui étudie les algorithmes est appelé l'algorithmique. On retrouve aujourd'hui des algorithmes dans de nombreuses applications telles que le fonctionnement des ordinateurs, la cryptographie, le routage d'informations, la planification et l'utilisation optimale des ressources, le , le traitement de textes, la bio-informatique L' algorithme peut être mis en forme de façon graphique dans un algorigramme ou organigramme de programmation.
Mineur (algèbre linéaire)vignette|Il est possible d'utiliser les mineurs d'ordre 2 d'une matrice de dimension 3 pour calculer son déterminant. En algèbre linéaire, les mineurs d'une matrice sont les déterminants de ses sous-matrices carrées. Ainsi si A est une matrice de taille m par n, on appelle mineur d'ordre k le déterminant d'une sous-matrice carrée de taille k obtenue en supprimant m – k lignes et n – k colonnes de la matrice initiale, ce que l'on peut noter det A, où I ( J) est une partie à k éléments de {1, ..., m ( n)}.
Algorithme de KarmarkarL’algorithme de Karmarkar est un algorithme introduit par Narendra Karmarkar en 1984 pour résoudre les problèmes d'optimisation linéaire. C'est le premier algorithme réellement efficace qui résout ces problèmes en un temps polynomial. La méthode de l'ellipsoïde fonctionne aussi en temps polynomial mais est inefficace en pratique. En posant le nombre de variables et le nombre de bits d'entrée de l'algorithme, l'algorithme de Karmarkar réalise opérations sur bits à comparer aux opérations pour la méthode des ellipsoïdes.
Matrices de PauliLes matrices de Pauli, développées par Wolfgang Pauli, forment, au facteur i près, une base de l'algèbre de Lie du groupe SU(2). Elles sont définies comme l'ensemble de matrices complexes de dimensions suivantes : (où i est l’unité imaginaire des nombres complexes). Ces matrices sont utilisées en mécanique quantique pour représenter le spin des particules, notamment dès 1927 dans l'étude non-relativiste du spin de l'électron : l'équation de Pauli.