Écoulement laminaireEn mécanique des fluides, l'écoulement laminaire est le mode d'écoulement d'un fluide où l'ensemble du fluide s'écoule plus ou moins dans la même direction, sans que les différences locales se contrarient (par opposition au régime turbulent, fait de tourbillons qui se contrarient mutuellement). L'écoulement laminaire est généralement celui qui est recherché lorsqu'on veut faire circuler un fluide dans un tuyau (car il crée moins de pertes de charge), ou faire voler un avion (car il est plus stable, et prévisible par les équations).
Hydraulique à surface librealt=Écoulement à surface libre rivière James (ressaut hydraulique).|vignette|Écoulement à surface libre rivière James (ressaut hydraulique). L’hydraulique à surface libre est la branche de l'hydraulique et de la mécanique des fluides qui s’intéresse aux écoulements de liquides dans un canal avec une surface libre. Un écoulement en surface libre désigne un écoulement avec une interface libre entre l’air et l’eau, comme dans une rivière, par opposition à un écoulement en charge, où cette interface est absente dans une conduite sous pression par exemple.
Parafoudrethumb|upright=.5|Parafoudre à varistance sur ligne de transmission . Selon le vocabulaire électrotechnique international, un parafoudre est un . On emploie aussi le terme parasurtenseur. La fonction du parafoudre est différente de celle d'un paratonnerre : alors qu'un paratonnerre a pour rôle de protéger une structure contre les coups directs de la foudre, le parafoudre (ou parasurtenseur) protège les installations électriques et de télécommunications contre les surtensions en général qui peuvent avoir pour origine la foudre ou la manœuvre d'appareils électriques (surtensions dites de manœuvre).
VagueUne vague () est une déformation de la surface d'une masse d'eau le plus souvent sous l'effet du vent. À l'interface des deux fluides principaux de la Terre, le vent crée des vagues sur les océans, mers et lacs. Ces mouvements irréguliers se dispersent à la surface de l'eau et sont collectivement appelés état de la mer. D'autres phénomènes, moins fréquents, sont aussi la source de vagues. Ainsi, les séismes majeurs, éruptions volcaniques ou chutes de météorites créent également des vagues appelées tsunamis ou raz-de-marée.
Débit (physique)Le débit est la quantité d'une grandeur qui traverse une surface donnée par unité de temps. Il permet de quantifier un déplacement de matière ou d'énergie. Le terme débit est le plus souvent associé au débit volumique : il quantifie alors le volume qui traverse une surface, une section, par unité de temps. Le débit massique caractérise la masse qui traverse la surface par unité de temps. Il s'agit de notions centrales dans une situation d'écoulement de fluide.
État stationnaireEn physique, un procédé est dit à l'état stationnaire ou en régime stationnaire si les variables le décrivant ne varient pas avec le temps. Mathématiquement un tel état se définit par: quelle que soit propriété du système (significative dans la présente perspective). Un exemple de procédé stationnaire est un réacteur chimique dans une phase de production continue. Un tel système travaille à température, à concentrations (réactifs et produits) et à volume constants ; en revanche, la couleur ou la texture du milieu peuvent être non-significatives.
Condition aux limites de RobinEn mathématique, une condition aux limites de Robin (ou de troisième type) est un type de condition aux limites portant le nom du mathématicien français Victor Gustave Robin (1855-1897), qui a travaillé dans le domaine de la thermodynamique. Elle est également appelée condition aux limites de Fourier. Imposée à une équation différentielle ordinaire ou à une équation aux dérivées partielles, il s'agit d'une relation linéaire entre les valeurs de la fonction et les valeurs de la dérivée de la fonction sur le bord du domaine.
Condition aux limites de DirichletEn mathématiques, une condition aux limites de Dirichlet (nommée d’après Johann Dirichlet) est imposée à une équation différentielle ou à une équation aux dérivées partielles lorsque l'on spécifie les valeurs que la solution doit vérifier sur les frontières/limites du domaine. Pour une équation différentielle, par exemple : la condition aux limites de Dirichlet sur l'intervalle s'exprime par : où et sont deux nombres donnés.
Problème aux limitesEn analyse, un problème aux limites est constitué d'une équation différentielle (ou plus généralement aux dérivées partielles) dont on recherche une solution prenant de plus des valeurs imposées en des limites du domaine de résolution. Contrairement au problème analogue dit de Cauchy, où une ou plusieurs conditions en un même endroit sont imposées (typiquement la valeur de la solution et de ses dérivées successives en un point), auquel le théorème de Cauchy-Lipschitz apporte une réponse générale, les problèmes aux limites sont souvent des problèmes difficiles, et dont la résolution peut à chaque fois conduire à des considérations différentes.
Condition aux limites de NeumannEn mathématiques, une condition aux limites de Neumann (nommée d'après Carl Neumann) est imposée à une équation différentielle ou à une équation aux dérivées partielles lorsque l'on spécifie les valeurs des dérivées que la solution doit vérifier sur les frontières/limites du domaine. Pour une équation différentielle, par exemple : la condition aux limites de Neumann sur l'intervalle s'exprime par : où et sont deux nombres donnés.