First-magnitude starFirst-magnitude stars are the brightest stars in the night sky, with apparent magnitudes lower (i.e. brighter) than +1.50. Hipparchus, in the 1st century BC, introduced the magnitude scale. He allocated the first magnitude to the 20 brightest stars and the sixth magnitude to the faintest stars visible to the naked eye. In the 19th century, this ancient scale of apparent magnitude was logarithmically defined, so that a star of magnitude 1.00 is exactly 100 times as bright as one of 6.00.
Magnitude (sismologie)vignette|Sismogramme enregistré par un sismographe à l'Observatoire Weston dans le Massachusetts, aux États-Unis. En sismologie, la magnitude est la représentation logarithmique du moment sismique, qui est lui-même une mesure de l'énergie libérée par un séisme déduite de l'amplitude de certaines ondes sismiques à des distances spécifiques (mesure de l'amplitude sur un sismogramme de l'onde P ou S). Plus le séisme a libéré d'énergie, plus la magnitude est élevée : un accroissement de magnitude de 1 correspond à une multiplication par 30 de l'énergie et par 10 de l'amplitude du mouvement.
Magnitude photographiqueAvant l'apparition des photomètres qui mesurent précisément la luminosité des objets astronomiques, la magnitude apparente d'un objet était obtenue en prenant une photo de celui-ci avec un appareil photographique. Ces images, faites sur des pellicules photographiques ou des plaques orthochromatiques, étaient plus sensibles à l'extrémité bleue du spectre visuel que l'œil humain ou les photomètres modernes.
Moléculethumb|Modèle en 3 dimensions d'une molécule de saccharose.|alt= thumb|Schéma de la liaison covalente de deux atomes d'oxygène. Une molécule est une structure de base de la matière appartenant à la famille des composés covalents. L'Union internationale de chimie pure et appliquée définit la molécule comme . C'est l'assemblage chimique électriquement neutre d'au moins deux atomes, différents ou non, qui peut exister à l'état libre, et qui représente la plus petite quantité de matière possédant les propriétés caractéristiques de la substance considérée.
Magnitude de momentL'échelle de magnitude de moment est une des échelles logarithmiques qui mesurent la magnitude d'un séisme, c'est-à-dire la « taille » d'un séisme proportionnelle à l'énergie sismique dégagée. Centrée sur les basses fréquences des ondes sismiques, elle quantifie précisément l'énergie émise par le séisme. Elle ne présente pas de saturation pour les plus grands événements, dont la magnitude peut être sous-évaluée par d'autres échelles, faussant ainsi les dispositifs d'alerte rapide essentiels pour la protection des populations.
Mesure physiqueLa mesure physique est l'action de déterminer la ou les valeurs d'une grandeur (longueur, capacité), par comparaison avec une grandeur constante de même espèce prise comme terme de référence (étalon ou unité). Selon la définition canonique : La mesure physique vise à l'objectivité et à la reproductibilité. La comparaison est numérique ; on exprime une caractéristique bien définie de l'objet par un nombre rationnel multipliant l'unité.
Ordre de grandeurUn ordre de grandeur est un nombre qui représente de façon simplifiée mais approximative la mesure d'une grandeur physique. Ce nombre, le plus souvent une puissance de 10, est utilisé notamment pour communiquer sur des valeurs très grandes ou très petites, comme le diamètre du système solaire ou la charge d'un électron. L'ordre de grandeur se mémorise plus facilement qu'une valeur précise et suffit pour de nombreux usages. Il est également utile dans les domaines intermédiaires pour situer la taille d'un objet ou pour choisir la gamme d'appareils de mesure à lui appliquer.
Groupe fondamentalEn mathématiques, et plus spécifiquement en topologie algébrique, le groupe fondamental, ou groupe de Poincaré, est un invariant topologique. Le groupe fondamental d'un espace topologique pointé (X, d) est, par définition, l'ensemble des classes d'homotopie de lacets (chemins fermés) de X de base d. C'est un groupe dont la loi de composition interne est induite par la concaténation (juxtaposition) des arcs. L'examen des groupes fondamentaux permet de prouver que deux espaces particuliers ne peuvent être homéomorphes (c'est-à-dire topologiquement équivalents).
Molécule diatomiqueLes molécules diatomiques sont des molécules constituées uniquement de deux atomes, de même ou de différents éléments chimiques. Le préfixe di- signifie deux en grec. et sont deux exemples de molécules diatomiques homonucléaires. Le lien dans de telles molécules est non polaire et pleinement covalent. Plusieurs composés chimiques sont constitués de molécules diatomiques hétéronucléaires, par exemple NaCl, CO, HBr et NO.
Étale fundamental groupThe étale or algebraic fundamental group is an analogue in algebraic geometry, for schemes, of the usual fundamental group of topological spaces. In algebraic topology, the fundamental group of a pointed topological space is defined as the group of homotopy classes of loops based at . This definition works well for spaces such as real and complex manifolds, but gives undesirable results for an algebraic variety with the Zariski topology.