Local discontinuous Galerkin method for diffusion equations with reduced stabilization
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Wave phenomena manifest in nature as electromagnetic waves, acoustic waves, and gravitational waves among others.Their descriptions as partial differential equations in electromagnetics, acoustics, and fluid dynamics are ubiquitous in science and engineeri ...
We consider the numerical approximation of an optimal control problem for an elliptic Partial Differential Equation (PDE) with random coefficients. Specifically, the control function is a deterministic, distributed forcing term that minimizes the expected ...
For two-dimensional (2D) time fractional diffusion equations, we construct a numerical method based on a local discontinuous Galerkin (LDG) method in space and a finite difference scheme in time. We investigate the numerical stability and convergence of th ...
Mathematical models involving multiple scales are essential for the description of physical systems. In particular, these models are important for the simulation of time-dependent phenomena, such as the heat flow, where the Laplacian contains mixed and ind ...
We study a model of crowd motion following a gradient vector field, with possibly additional interaction terms such as attraction/repulsion, and we present a numerical scheme for its solution through a Lagrangian discretization. The density constraint of t ...
This paper is concerned with the mathematical analysis of a coupled elliptic–parabolic system modeling the interaction between the propagation of electric potential and subsequent deformation of the cardiac tissue. The problem consists in a reaction–diffus ...
A fully discrete analysis of the finite element heterogeneous multiscale method for a class of nonlinear elliptic homogenization problems of nonmonotone type is proposed. In contrast to previous results obtained for such problems in dimension d≤2 for ...
We consider the numerical approximation of a risk-averse optimal control problem for an elliptic partial differential equation (PDE) with random coefficients. Specifically, the control function is a deterministic, dis- tributed forcing term that minimizes ...
In this report, we first introduce operator splitting as a way to solve nonlinear reaction-diffusion PDEs. We then present a flux-limiting technique for anisotropic diffusion problems that allows to recover the discrete maximum principle. Finally, we imple ...
The objective of this thesis is to develop efficient numerical schemes to successfully tackle problems arising from the study of groundwater flows in a porous saturated medium; we deal therefore with partial differential equations(PDE) having random coeffi ...