Provencevignette|Vue de la Mer Méditerranée depuis Toulon La Provence (prononcé dans une large partie de la France, en français de Provence; Provença/Prouvènço en occitan provençal, de l'ancien provençal Provensa, dérivant du latin provincia, "province") est une région historique et culturelle ainsi qu'un ancien État indépendant puis associé à la France. Elle correspond à l'actuelle région Provence-Alpes-Côte d'Azur et au sud de la région Auvergne-Rhône-Alpes.
Aix-en-ProvenceAix-en-Provence (en provençal : Ais) est la capitale historique de la Provence. C'est aujourd'hui une commune française du Sud-Est de la France, dans le département des Bouches-du-Rhône, dont elle est sous-préfecture, en région Provence-Alpes-Côte d'Azur. Elle forme avec le pays d'Aix au sein de la Métropole Aix-Marseille Provence. Les habitants d'Aix s'appellent les Aixois en français (en provençal : lei sestian). Fondée en sous le nom d'Aquae Sextiae par la garnison romaine de Caius Sextius Calvinus, Aix devient par la suite la capitale du comté de Provence.
Démonstration automatique de théorèmesLa démonstration automatique de théorèmes (DAT) est l'activité d'un logiciel qui démontre une proposition qu'on lui soumet, sans l'aide de l'utilisateur. Les démonstrateurs automatiques de théorème ont résolu des conjectures intéressantes difficiles à établir, certaines ayant échappé aux mathématiciens pendant longtemps ; c'est le cas, par exemple, de la , démontrée en 1996 par le logiciel EQP.
Prover9Prover9 is an automated theorem prover for first-order and equational logic developed by William McCune. Prover9 is the successor of the Otter theorem prover also developed by William McCune. Prover9 is noted for producing relatively readable proofs and having a powerful hints strategy. Prover9 is intentionally paired with Mace4, which searches for finite models and counterexamples. Both can be run simultaneously from the same input, with Prover9 attempting to find a proof, while Mace4 attempts to find a (disproving) counter-example.
Vignoble de ProvenceLe vignoble de Provence s'étend du sud d'Avignon jusqu'à Nice, sur la majeure partie de la Provence. Ce vignoble est marqué par une très grande hétérogénéité de situation tant pédo-géologique que climatique avec une dominance du climat méditerranéen strict mais également de zones plus froides où l'influence du vent est déterminante. La culture de la vigne a été introduite sur les rives méditerranéennes de la Gaule par les Grecs de Phocée.
Dimension d'un espace vectorielvignette|espace à zéro dimension. En algèbre linéaire, la dimension de Hamel ou simplement la dimension est un invariant associé à tout espace vectoriel E sur un corps K. La dimension de E est le cardinal commun à toutes ses bases. Ce nombre est noté dimK(E) (lire « dimension de E sur K ») ou dim(E) (s'il n'y a aucune confusion sur le corps K des scalaires). Si E admet une partie génératrice finie, alors sa dimension est finie et elle vaut le nombre de vecteurs constituant une base de E.
DimensionLe terme dimension, du latin dimensio « action de mesurer », désigne d’abord chacune des grandeurs d’un objet : longueur, largeur et profondeur, épaisseur ou hauteur, ou encore son diamètre si c'est une pièce de révolution. L’acception a dérivé de deux façons différentes en physique et en mathématiques. En physique, la dimension qualifie une grandeur indépendamment de son unité de mesure, tandis qu’en mathématiques, la notion de dimension correspond au nombre de grandeurs nécessaires pour identifier un objet, avec des définitions spécifiques selon le type d’objet (algébrique, topologique ou combinatoire notamment).
Zero-dimensional spaceIn mathematics, a zero-dimensional topological space (or nildimensional space) is a topological space that has dimension zero with respect to one of several inequivalent notions of assigning a dimension to a given topological space. A graphical illustration of a nildimensional space is a point. Specifically: A topological space is zero-dimensional with respect to the Lebesgue covering dimension if every open cover of the space has a refinement which is a cover by disjoint open sets.