Espace de SobolevEn analyse mathématique, les espaces de Sobolev sont des espaces fonctionnels particulièrement adaptés à la résolution des problèmes d'équation aux dérivées partielles. Ils doivent leur nom au mathématicien russe Sergueï Lvovitch Sobolev. Plus précisément, un espace de Sobolev est un espace vectoriel de fonctions muni de la norme obtenue par la combinaison de la norme L de la fonction elle-même et de ses dérivées jusqu'à un certain ordre. Les dérivées sont comprises dans un sens faible, au sens des distributions afin de rendre l'espace complet.
Connected relationIn mathematics, a relation on a set is called connected or complete or total if it relates (or "compares") all pairs of elements of the set in one direction or the other while it is called strongly connected if it relates pairs of elements. As described in the terminology section below, the terminology for these properties is not uniform. This notion of "total" should not be confused with that of a total relation in the sense that for all there is a so that (see serial relation).
Cohomologie cristallineLa cohomologie cristalline est une cohomologie de Weil pour les schémas, introduite par Alexander Grothendieck en 1966 et développée par Pierre Berthelot. Elle étend le domaine d'application de la cohomologie étale en considérant les modules sur les anneaux de vecteurs de Witt sur le corps de base. Conjectures de Weil Dans l'étude des variétés différentiables compactes, la formule de Lefschetz permet de calculer le nombre de points fixes d'un morphisme de la variété dans elle-même.
Topologie quotientEn mathématiques, la topologie quotient consiste intuitivement à créer une topologie en collant certains points d'un espace donné sur d'autres, par le biais d'une relation d'équivalence bien choisie. Cela est souvent fait dans le but de construire de nouveaux espaces à partir d'anciens. On parle alors d'espace topologique quotient. Beaucoup d'espaces intéressants, le cercle, les tores, le ruban de Möbius, les espaces projectifs sont définis comme des quotients.
Groupe quotientDans l'étude des groupes, le quotient d'un groupe est une opération classique permettant la construction de nouveaux groupes à partir d'anciens. À partir d'un groupe G et d'un sous-groupe H de G, on peut définir une loi de groupe sur l'ensemble G/H des classes de G suivant H, à condition que le sous-groupe H soit normal, c'est-à-dire que les classes à droite soient égales aux classes à gauche (gH = Hg). Étant donné un élément g de G, nous définissons la classe à gauche gH = { gh | h ∈ H }.
Espace vectoriel quotientEn algèbre linéaire, l'espace vectoriel quotient E/F d'un espace vectoriel E par un sous-espace vectoriel F est la structure naturelle d'espace vectoriel sur l'ensemble quotient de E par la relation d'équivalence définie de la manière suivante : v est en relation avec w si et seulement si v – w appartient à F. C'est donc l'ensemble des classes [v] = v + F, où v parcourt E, muni des lois suivantes : somme vectorielle : [v] + [w] = [v + w] ; multiplication par un scalaire : λ [v] = [λ v].