Concept

Espace vectoriel quotient

Résumé
En algèbre linéaire, l'espace vectoriel quotient E/F d'un espace vectoriel E par un sous-espace vectoriel F est la structure naturelle d'espace vectoriel sur l'ensemble quotient de E par la relation d'équivalence définie de la manière suivante : v est en relation avec w si et seulement si v – w appartient à F. C'est donc l'ensemble des classes [v] = v + F, où v parcourt E, muni des lois suivantes :
  • somme vectorielle : [v] + [w] = [v + w] ;
  • multiplication par un scalaire : λ [v] = [λ v]. L'application v ↦ [v] est une application linéaire surjective dont le noyau est F.
Propriété universelle Les espaces quotients interviennent dans le théorème de factorisation en algèbre linéaire. Toute application linéaire f : E→G se factorise comme la composée de la surjection linéaire E→E/ker f par l'injection linéaire (E/ker f)→G. Si F est inclus dans ker f alors il existe une application linéaire g : E/F→G, unique, telle que f soit la composée de l'application quotient E→E/F et de
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Aucun résultat

Personnes associées

Aucun résultat

Unités associées

Aucun résultat

Concepts associés

Aucun résultat

Cours associés

Aucun résultat

Séances de cours associées

Chargement