En algèbre linéaire, l'espace vectoriel quotient E/F d'un espace vectoriel E par un sous-espace vectoriel F est la structure naturelle d'espace vectoriel sur l'ensemble quotient de E par la relation d'équivalence définie de la manière suivante : v est en relation avec w si et seulement si v – w appartient à F. C'est donc l'ensemble des classes [v] = v + F, où v parcourt E, muni des lois suivantes : somme vectorielle : [v] + [w] = [v + w] ; multiplication par un scalaire : λ [v] = [λ v]. L'application v ↦ [v] est une application linéaire surjective dont le noyau est F. Les espaces quotients interviennent dans le théorème de factorisation en algèbre linéaire. Toute application linéaire f : E→G se factorise comme la composée de la surjection linéaire E→E/ker f par l'injection linéaire (E/ker f)→G. Si F est inclus dans ker f alors il existe une application linéaire g : E/F→G, unique, telle que f soit la composée de l'application quotient E→E/F et de g. Autrement dit, l'application quotient E→E/F est l'objet initial de la catégorie des applications linéaires f : E→G dont le noyau contient F. Si E est l'espace K[X] des polynômes à une indéterminée à coefficients dans un corps K, F le sous-espace des multiples d'un polynôme fixé P de degré n et G celui des polynômes de degré strictement inférieur à n, alors (par division euclidienne par P) F et G sont supplémentaires. Par conséquent, l'espace quotient E/F est isomorphe à G, donc de dimension n. Soit E = R2 le plan cartésien, et soit F une droite passant par l'origine dans E. Alors l'espace quotient E/F peut être identifié avec l'espace de toutes les droites de E qui sont parallèles à F. C'est-à-dire,les éléments de l'ensemble E/F sont des droites de E parallèles à F. Notez que les points le long de l'une de ces droites vérifient la relation d'équivalence car leurs différences appartiennent à F. Cela donne un moyen de visualiser géométriquement les espaces quotients. (En paramétrant ces droites, l'espace quotient peut être représenté de manière plus conventionnelle comme l'espace de tous les points le long d'une droite passant par l'origine qui n'est pas parallèle à F).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (8)
MATH-225: Topology II - fundamental groups
On étudie des notions de topologie générale: unions et quotients d'espaces topologiques; on approfondit les notions de revêtements et de groupe fondamental,et d'attachements de cellules et on démontre
MATH-512: Optimization on manifolds
We develop, analyze and implement numerical algorithms to solve optimization problems of the form min f(x) where x is a point on a smooth manifold. To this end, we first study differential and Riemann
MATH-211: Algebra II - groups
This course deals with group theory, with particular emphasis on group actions and notions of category theory.
Afficher plus
Publications associées (30)

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.