Maximum satisfiability problemIn computational complexity theory, the maximum satisfiability problem (MAX-SAT) is the problem of determining the maximum number of clauses, of a given Boolean formula in conjunctive normal form, that can be made true by an assignment of truth values to the variables of the formula. It is a generalization of the Boolean satisfiability problem, which asks whether there exists a truth assignment that makes all clauses true. The conjunctive normal form formula is not satisfiable: no matter which truth values are assigned to its two variables, at least one of its four clauses will be false.
SatisfaisabilitéEn logique mathématique, la satisfaisabilité ou satisfiabilité et la validité sont des concepts élémentaires de sémantique. Une formule est satisfaisable s'il est possible de trouver une interprétation (modèle), une façon d'interpréter tous les éléments constitutifs de la formule, qui rend la formule vraie. Une formule est universellement valide, ou en raccourci valide si, pour toutes les interprétations, la formule est vraie.
Optimisation non linéaireEn optimisation, vue comme branche des mathématiques, l'optimisation non linéaire (en anglais : nonlinear programming – NLP) s'occupe principalement des problèmes d'optimisation dont les données, i.e., les fonctions et ensembles définissant ces problèmes, sont non linéaires, mais sont aussi différentiables autant de fois que nécessaire pour l'établissement des outils théoriques, comme les conditions d'optimalité, ou pour la bonne marche des algorithmes de résolution qui y sont introduits et analysés.
Satisfiability modulo theoriesEn informatique et en logique mathématique, un problème de satisfiabilité modulo des théories (SMT) est un problème de décision pour des formules de logique du premier ordre avec égalité (sans quantificateurs), combinées à des théories dans lesquelles sont exprimées certains symboles de prédicat et/ou certaines fonctions. Des exemples de théories incluent la théorie des nombres réels, la théorie de l’arithmétique linéaire, des théories de diverses structures de données comme les listes, les tableaux ou les tableaux de bits, ainsi que des combinaisons de celles-ci.
Horn-satisfiabilitéUne formule de Horn est une conjonction de clauses contenant chacune au plus un littéral positif, c'est-à-dire une conjonction de clauses de Horn. Puisque le problème SAT est NP-complet, donc vérifiable en temps polynomial et plus difficile que tout problème dans NP, il est naturel de rechercher des problèmes proches mais plus "faciles" à résoudre. C'est notamment le cas de la satisfaisabilité d'une formule de Horn, puisqu'il s'agit d'un problème P-complet, plus difficile que tout problème dans P.
Problème 2-SATEn informatique théorique, le problème 2-SAT est un problème de décision. C'est une restriction du problème SAT qui peut être résolu en temps polynomial, alors que le problème général est NP complet. Le problème 2-SAT consiste à décider si une formule booléenne en forme normale conjonctive, dont toutes les clauses sont de taille 2, est satisfaisable. De telles formules sont appelées 2-CNF ou formules de Krom. On considère des formules en forme normale conjonctive, c'est-à-dire que ce sont des ET de OU de littéraux (un littéral est une variable ou la négation d'une variable).
Covering problemsIn combinatorics and computer science, covering problems are computational problems that ask whether a certain combinatorial structure 'covers' another, or how large the structure has to be to do that. Covering problems are minimization problems and usually integer linear programs, whose dual problems are called packing problems. The most prominent examples of covering problems are the set cover problem, which is equivalent to the hitting set problem, and its special cases, the vertex cover problem and the edge cover problem.
Problème d'affectationEn informatique, plus précisément en recherche opérationnelle et d'optimisation combinatoire, le problème d'affectation consiste à attribuer au mieux des tâches à des agents. Chaque agent peut réaliser une unique tâche pour un coût donné et chaque tâche doit être réalisée par un unique agent. Les affectations (c'est-à-dire les couples agent-tâche) ont toutes un coût défini. Le but est de minimiser le coût total des affectations afin de réaliser toutes les tâches.
Optimisation SDPEn mathématiques et en informatique théorique, l'optimisation SDP ou semi-définie positive, est un type d'optimisation convexe, qui étend l'optimisation linéaire. Dans un problème d'optimisation SDP, l'inconnue est une matrice symétrique que l'on impose d'être semi-définie positive. Comme en optimisation linéaire, le critère à minimiser est linéaire et l'inconnue doit également satisfaire une contrainte affine. L'optimisation SDP se généralise par l'optimisation conique, qui s'intéresse aux problèmes de minimisation d'une fonction linéaire sur l'intersection d'un cône et d'un sous-espace affine.
Démonstration automatique de théorèmesLa démonstration automatique de théorèmes (DAT) est l'activité d'un logiciel qui démontre une proposition qu'on lui soumet, sans l'aide de l'utilisateur. Les démonstrateurs automatiques de théorème ont résolu des conjectures intéressantes difficiles à établir, certaines ayant échappé aux mathématiciens pendant longtemps ; c'est le cas, par exemple, de la , démontrée en 1996 par le logiciel EQP.