Stratégie d'évaluation (informatique)Un langage de programmation utilise une stratégie d'évaluation pour déterminer « quand » évaluer les arguments à l'appel d'une fonction (ou encore, opération, méthode) et « comment » passer les arguments à la fonction. Par exemple, dans l'appel par valeur, les arguments doivent être évalués avant d'être passés à la fonction. La stratégie d'évaluation d'un langage de programmation est spécifiée par la définition du langage même. En pratique, la plupart des langages de programmation (Java, C...
Évaluation paresseuseL’évaluation paresseuse (), appelée aussi appel par nécessité ou évaluation retardée est une technique d'implémentation des programmes récursifs pour laquelle l'évaluation d'un paramètre de fonction ne se fait pas avant que les résultats de cette évaluation ne soient réellement nécessaires. Ces résultats, une fois calculés, sont préservés pour des réutilisations ultérieures. Dans un langage comme Haskell, l'évaluation est paresseuse par défaut.
KrigeageLe krigeage est, en géostatistique, la méthode d’estimation linéaire garantissant le minimum de variance. Le krigeage réalise l'interpolation spatiale d'une variable régionalisée par calcul de l'espérance mathématique d'une variable aléatoire, utilisant l'interprétation et la modélisation du variogramme expérimental. C'est le meilleur estimateur linéaire non biaisé ; il se fonde sur une méthode objective. Il tient compte non seulement de la distance entre les données et le point d'estimation, mais également des distances entre les données deux à deux.
Forêt d'arbres décisionnelsvignette|Illustration du principe de construction d'une forêt aléatoire comme agrégation d'arbre aléatoires. En apprentissage automatique, les forêts d'arbres décisionnels (ou forêts aléatoires de l'anglais random forest classifier) forment une méthode d'apprentissage ensembliste. Ils ont été premièrement proposées par Ho en 1995 et ont été formellement proposées en 2001 par Leo Breiman et Adele Cutler. Cet algorithme combine les concepts de sous-espaces aléatoires et de bagging.
Méthode de Newtonvignette|Une itération de la méthode de Newton. En analyse numérique, la méthode de Newton ou méthode de Newton-Raphson est, dans son application la plus simple, un algorithme efficace pour trouver numériquement une approximation précise d'un zéro (ou racine) d'une fonction réelle d'une variable réelle. Cette méthode doit son nom aux mathématiciens anglais Isaac Newton (1643-1727) et Joseph Raphson (peut-être 1648-1715), qui furent les premiers à la décrire pour la recherche des solutions d'une équation polynomiale.