Alice et Bobthumb|Schéma de communication entre Alice et Bob intercepté par Mallory Les personnages Alice et Bob sont des figures classiques en cryptologie. Ces noms sont utilisés au lieu de « personne A » et « personne B » ; Alice et Bob cherchent dans la plupart des cas à communiquer de manière sécurisée. Ces noms ont été inventés par Ron Rivest, Adi Shamir et Leonard Adleman pour leur article de 1978 dans le Communications of the ACM qui présentait le cryptosystème RSA (le rapport technique de 1977 sur RSA n'utilisait pas encore ces noms).
Nombre de Mersenne premiervignette|droite|Le moine français Marin Mersenne (1588-1648) En mathématiques et plus précisément en arithmétique, un nombre de Mersenne est un nombre de la forme 2 − 1 (souvent noté ), où est un entier naturel non nul ; un nombre de Mersenne premier (ou nombre premier de Mersenne) est donc un nombre premier de cette forme. Ces nombres doivent leur nom au religieux érudit et mathématicien français du Marin Mersenne ; mais, près de auparavant, Euclide les utilisait déjà pour étudier les nombres parfaits.
Fonction à sens uniquevignette|Panneau de signalisation routière de sens unique Une fonction à sens unique (ou one-way function en anglais) est une fonction qui peut être aisément calculée, mais qui est difficile à inverser — c'est-à-dire qu'étant donnée une , il est difficile de lui trouver un antécédent. Les fonctions à sens unique sont utilisées en cryptographie asymétrique et dans les fonctions de hachage cryptographiques. La théorie de la complexité des algorithmes est un élément central de la notion de fonction à sens unique.
Nombres premiers cousinsEn mathématiques, les nombres premiers cousins sont les paires de nombres premiers qui diffèrent de 4. Ils se rapprochent ainsi des nombres premiers jumeaux, les paires de nombres premiers qui diffèrent de 2, et des nombres premiers sexy, les paires de nombres premiers qui diffèrent de 6.
Wheel factorizationWheel factorization is a method for generating a sequence of natural numbers by repeated additions, as determined by a number of the first few primes, so that the generated numbers are coprime with these primes, by construction. For a chosen number n (usually no larger than 4 or 5), the first n primes determine the specific way to generate a sequence of natural numbers which are all known in advance to be coprime with these primes, i.e. are all known to not be multiples of any of these primes.