vignette|droite|Le moine français Marin Mersenne (1588-1648)
En mathématiques et plus précisément en arithmétique, un nombre de Mersenne est un nombre de la forme 2 − 1 (souvent noté ), où est un entier naturel non nul ; un nombre de Mersenne premier (ou nombre premier de Mersenne) est donc un nombre premier de cette forme. Ces nombres doivent leur nom au religieux érudit et mathématicien français du Marin Mersenne ; mais, près de auparavant, Euclide les utilisait déjà pour étudier les nombres parfaits. Avant Mersenne, et même un certain temps après lui, la recherche des nombres de Mersenne premiers est intrinsèquement liée à celle des nombres parfaits.
Si le nombre de Mersenne 2 − 1 est premier, alors est premier. Par exemple, les nombres de Mersenne sont premiers, et leurs exposants 2, 3 le sont bien aussi. Cette condition que soit premier est nécessaire pour que le nombre de Mersenne 2 − 1 soit premier. Par exemple, 1, 4 ne sont pas premiers, et les nombres de Mersenne ne le sont effectivement pas. Mais cette condition n'est pas suffisante. Par exemple, 11 est premier, mais le nombre de Mersenne ne l'est pas.
Il existe un test de primalité efficace pour les nombres de Mersenne, le test de primalité de Lucas-Lehmer ; de ce fait, les plus grands nombres premiers connus sont des nombres de Mersenne. Les nombres de Mersenne premiers sont pourtant rares : seulement 51 sont connus début 2022. On ne sait même pas s'il en existe une infinité.
La recherche de grands nombres de Mersenne premiers fait l'objet d'un projet de calcul collaboratif, le projet GIMPS.
Les nombres premiers de Mersenne sont liés aux nombres parfaits, qui sont les nombres « égaux à la somme de leurs diviseurs stricts ». Historiquement, c'est cette connexion qui a motivé l'étude des nombres premiers de Mersenne. Dès le , Euclide démontrait que si M = 2 – 1 est un nombre premier, alors M(M + 1)/2 = 2(2 – 1) est un nombre parfait. Deux millénaires plus tard, au , Euler prouvait que tous les nombres parfaits pairs sont de cette forme.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course introduces the basics of cryptography. We review several types of cryptographic primitives, when it is safe to use them and how to select the appropriate security parameters. We detail how
vignette|Nombres naturels de zéro à cent. Les nombres premiers sont marqués en rouge. vignette|Le nombre 7 est premier car il admet exactement deux diviseurs positifs distincts. Un nombre premier est un entier naturel qui admet exactement deux diviseurs distincts entiers et positifs. Ces deux diviseurs sont 1 et le nombre considéré, puisque tout nombre a pour diviseurs 1 et lui-même (comme le montre l’égalité n = 1 × n), les nombres premiers étant ceux qui ne possèdent pas d'autre diviseur.
thumb|right|Logo de GIMPS Le Great Internet Mersenne Prime Search, ou GIMPS, est un projet de calcul partagé où les volontaires utilisent un logiciel client pour chercher les nombres premiers de Mersenne. Le projet a été fondé par George Woltman, qui est aussi le créateur du logiciel de calcul distribué employé. L'algorithme utilisé est le test de primalité de Lucas-Lehmer pour les nombres de Mersenne. Ce projet a permis de trouver les quinze plus grands nombres premiers de Mersenne connus qui sont aussi les quinze plus grands nombres premiers connus.
thumb|Le mathématicien français Pierre de Fermat (1601-1665) étudia les propriétés des nombres portant maintenant son nom. Un nombre de Fermat est un nombre qui peut s'écrire sous la forme 22n + 1, avec n entier naturel. Le n-ième nombre de Fermat, 22n + 1, est noté Fn. Ces nombres doivent leur nom à Pierre de Fermat, qui émit la conjecture que tous ces nombres étaient premiers. Cette conjecture se révéla fausse, F5 étant composé, de même que tous les suivants jusqu'à F32.
Couvre la théorie de la dimension des anneaux, y compris l'additivité de la dimension et de la hauteur, Hauptidealsatz de Krull, et la hauteur des intersections générales complètes.
We prove the non-planarity of a family of 3-regular graphs constructed from the solutions to the Markoff equation x2 + y2 + z2 = xyz modulo prime numbers greater than 7. The proof uses Euler characteristic and an enumeration of the short cycles in these gr ...
Berlin2024
We initiate the study of certain families of L-functions attached to characters of subgroups of higher-rank tori, and of their average at the central point. In particular, we evaluate the average of the values L( 2 1 , chi a )L( 21 , chi b ) for arbitrary ...
We prove that the coefficients of a GL3 x GL2 Rankin-Selberg L-function do not correlate with a wide class of trace functions of small conductor modulo primes, generalizing the corresponding result of Fouvry, Kowalski, and Michel for GL2 and of Kowalski, L ...