Publication

The hydraulic solver Flower and its validation against the QUELL experiment in SULTAN

Luca Bottura
1999
Article
Résumé

Knowledge of the hydraulic boundary conditions is a prerequisite for accurate estimates of the quench characteristics of superconducting magnets. A set of routines (Flower) has been designed and interfaced to the code Gandalf to provide a simplified model of the hydraulic connections to a cryogenic plant of a coil using cable-in-conduit conductors with central cooling channel. The validation against experimental data provided by the Quench Experiment on Long Length (QUELL) in the CRPP facility SULTAN have shown that Flower is able to simulate the hydraulic boundary conditions within engineering limits of accuracy.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (32)
Superconducting magnet
A superconducting magnet is an electromagnet made from coils of superconducting wire. They must be cooled to cryogenic temperatures during operation. In its superconducting state the wire has no electrical resistance and therefore can conduct much larger electric currents than ordinary wire, creating intense magnetic fields. Superconducting magnets can produce stronger magnetic fields than all but the strongest non-superconducting electromagnets, and large superconducting magnets can be cheaper to operate because no energy is dissipated as heat in the windings.
Supraconductivité
La supraconductivité, ou supraconduction, est un phénomène physique caractérisé par l'absence de résistance électrique et l'expulsion du champ magnétique — l'effet Meissner — à l'intérieur de certains matériaux dits supraconducteurs. La supraconductivité découverte historiquement en premier, et que l'on nomme communément supraconductivité conventionnelle, se manifeste à des températures très basses, proches du zéro absolu (). La supraconductivité permet notamment de transporter de l'électricité sans perte d'énergie.
Superconducting wire
Superconducting wires are electrical wires made of superconductive material. When cooled below their transition temperatures, they have zero electrical resistance. Most commonly, conventional superconductors such as niobium–titanium are used, but high-temperature superconductors such as YBCO are entering the market. Superconducting wire's advantages over copper or aluminum include higher maximum current densities and zero power dissipation.
Afficher plus
Publications associées (76)

The magnet feeders for the European DEMO fusion reactor: Conceptual design and recent advances

Rainer Wesche, Roberto Guarino, Frédéric Michel

The magnet feeders are part of the critical systems of a fusion reactor since they represent the interface between the in-cryostat components at 4.5 K and the room-temperature cryogenic plant and power supply. The European DEMO tokamak foresees 16 toroidal ...
Lausanne2024

Performance of the Cable-in-Conduit Conductors for Super-X Test Facility

Kamil Sedlák, Yu Wu

Following the conceptual design, the engineering design of the dc magnet and cable-in-conduit conductor (CICC) for the Super-X test facility has been done in 2021. Totally three types of conductors with different structures were designed for the three pair ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2023

Intergrade Joints for Nb3Sn cables of high magnetic field magnets

Vincenzo D'Auria

The objective of this thesis is the development of high-field and high-current joints between Nb3Sn cables for superconducting coils. The main fields of application are high energy physics (HEP) and thermonuclear fusion. In this thesis, the focus is on Win ...
EPFL2022
Afficher plus
MOOCs associés (7)
Fundamentals of Biomedical Imaging: Magnetic Resonance Imaging (MRI)
Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).
Fundamentals of Biomedical Imaging: Magnetic Resonance Imaging (MRI)
Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Afficher plus