Grand cercleEn géométrie, un grand cercle est un cercle tracé à la surface d'une sphère qui a le même diamètre qu'elle. De manière équivalente, on peut définir un grand cercle comme un cercle tracé sur la sphère ayant le même centre que la sphère ; ou encore, comme l'intersection entre une sphère et un plan passant par le centre de cette sphère ; ou comme un cercle tracé sur la sphère de longueur maximale. Par exemple, que l'on modélise le globe terrestre par une sphère ou que l'on considère l'ellipsoïde, dans ces deux cas l'équateur est un grand cercle.
CercleEn géométrie euclidienne, un cercle est une courbe plane fermée constituée de points situés à égale distance d'un point nommé centre. Cette distance est appelée rayon du cercle. Dans le plan euclidien, il s'agit du « rond » qui est associé en français au terme de cercle. Dans un plan non euclidien ou dans le cas de la définition d'une distance non euclidienne, la forme peut être plus complexe. Dans un espace de dimension quelconque, l'ensemble des points placés à une distance constante d'un centre est appelé sphère.
Quadrature du cerclevignette|Le carré de côté a la même aire que le cercle de rayon 1. La quadrature du cercle est un problème classique de mathématiques apparaissant en géométrie. Il fait partie des trois grands problèmes de l'Antiquité, avec la trisection de l'angle et la duplication du cube. Le problème consiste à construire un carré de même aire qu'un disque donné à l'aide d'une règle et d'un compas (voir Nombre constructible). La quadrature du cercle nécessiterait la construction à la règle et au compas de la racine carrée du nombre π, ce qui est impossible en raison de la transcendance de π.