vignette|Le carré de côté a la même aire que le cercle de rayon 1.
La quadrature du cercle est un problème classique de mathématiques apparaissant en géométrie. Il fait partie des trois grands problèmes de l'Antiquité, avec la trisection de l'angle et la duplication du cube.
Le problème consiste à construire un carré de même aire qu'un disque donné à l'aide d'une règle et d'un compas (voir Nombre constructible).
La quadrature du cercle nécessiterait la construction à la règle et au compas de la racine carrée du nombre π, ce qui est impossible en raison de la transcendance de π. Ne sont constructibles que certains nombres algébriques.
Ce problème impossible à résoudre a donné naissance à l'expression , qui signifie tenter de résoudre un problème insoluble.
De plus, ce problème mathématique est celui qui a résisté le plus longtemps aux mathématiciens. Ils ont mis plus de trois millénaires à étudier le problème, reconnu comme insoluble par Ferdinand von Lindemann en 1882.
thumb|La construction égyptienne d'après le papyrus Rhind.
Les civilisations agraires de l'Orient ancien disposaient de méthodes empiriques d'estimation des surfaces circulaires. Ainsi l'un des problèmes donnés comme résolus par le papyrus Rhind, rédigé vers 1650 , donne le carré de côté 8 comme de même surface qu'un cercle de diamètre 9, ce qui revient à prendre pour le nombre π la valeur approchée 3 + + + = 3,16... De telles méthodes étaient le fruit d'une longue pratique, et suffisaient aux hommes de ce temps : on ne faisait alors pas encore la distinction entre connaissance utile et connaissance exacte.
La démarche hypothético-déductive, qui substitua aux recueils de problèmes résolus des énoncés démontrés à partir de quelques propriétés prises comme axiomes, ne s'est imposée en mathématiques qu'à partir du , et encore uniquement dans le monde grec. Déjà apparente dans les raisonnements attribués à Thalès de Milet, elle est clairement élevée au rang de méthode avec Pythagore de Samos et l’École pythagoricienne.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
En géométrie euclidienne, un carré est un quadrilatère convexe à quatre côtés de même longueur avec quatre angles droits. C’est donc un polygone régulier, qui est à la fois un losange, un rectangle, et par conséquent aussi un parallélogramme particulier. Dans le plan, un carré est invariant par quatre symétries axiales, par deux rotations d’angle droit et par une symétrie centrale par rapport à l’intersection de ses diagonales. Les premières représentations du carré datent de la préhistoire.
La trisection de l'angle est un problème classique de mathématiques. C'est un problème géométrique, faisant partie des trois grands problèmes de l'Antiquité, avec la quadrature du cercle et la duplication du cube. Ce problème consiste à diviser un angle en trois parties égales, à l'aide d'une règle et d'un compas. Sous cette forme, le problème (comme les deux autres) n'a pas de solution, ce qui fut démontré par Pierre-Laurent Wantzel en 1837.
La neusis (du grec ancien νεῦσις venant de νεύειν neuein « pencher vers »; pluriel : νεύσεις neuseis) est une méthode de construction géométrique utilisée dans l'Antiquité par les mathématiciens grecs dans des cas où les constructions à la règle et au compas étaient impossibles. La construction par neusis consiste à placer un segment de longueur fixée a entre deux courbes données l et m, de telle sorte que la droite support du segment passe par un point fixé P.
Explore les domaines simplement connectés dans l'analyse complexe, y compris les fonctions holomorphiques, la formule intégrale de Cauchy, et la série Taylor.
We find an optimal upper bound on the volume of the John ellipsoid of a k-dimensional section of the n-dimensional cube, and an optimal lower bound on the volume of the Lowner ellipsoid of a projection of the n-dimensional cross-polytope onto a k-dimension ...
We show that the finitely generated simple left orderable groups G(rho) constructed by the first two authors in Hyde and Lodha [Finitely generated infinite simple groups of homeomorphisms of the real line. Invent. Math. (2019), doi:10.1007/s00222-01900880- ...
Within the ideal magnetohydrodynamic (MHD) model, the geodesic acoustic modes (GAMs) in tokamaks derived by Winsor et al (1968 Phys. Fluids 11 2448) belong to the continuous spectrum, characterised by unbounded non-square integrable eigenfunctions (delta f ...