Isomorphisme de graphesEn mathématiques, dans le cadre de la théorie des graphes, un isomorphisme de graphes est une bijection entre les sommets de deux graphes qui préserve les arêtes. Ce concept est en accord avec la notion générale d'isomorphisme, une bijection qui préserve les structures. Plus précisément, un isomorphisme f entre les graphes G et H est une bijection entre les sommets de G et ceux de H, telle qu'une paire de sommets {u, v} de G est une arête de G si et seulement si {ƒ(u), ƒ(v)} est une arête de H.
Graphe cordalthumb|Un cycle, en noir, avec deux cordes, en vert. Si l'on s'en tient à cette partie, le graphe est cordal. Supprimer l'une des arêtes vertes rendrait le graphe non cordal. En effet, l'autre arête verte formerait, avec les trois arêtes noires, un cycle de longueur 4 sans corde. En théorie des graphes, on dit qu'un graphe est cordal si chacun de ses cycles de quatre sommets ou plus possède une corde, c'est-à-dire une arête reliant deux sommets non adjacents du cycle.
Graphe de Ramanujanvignette|Le graphe de Pappus, qui selon les valeurs propres de sa matrice de connexion, est aussi un graphe de Ramanujan. Un graphe de Ramanujan, nommé d'après Srinivasa Ramanujan, est un graphe régulier dont le trou spectral (spectral gap) est presque aussi grand que possible. De tels graphes sont d'excellents graphes expanseurs. Autrement dit, il s'agit d'une famille de graphes où chaque sommet a un même degré (régulier) et où les deux valeurs propres les plus élevées ont une différence presque aussi grande que possible.
Graphe bipartiEn théorie des graphes, un graphe est dit biparti si son ensemble de sommets peut être divisé en deux sous-ensembles disjoints et tels que chaque arête ait une extrémité dans et l'autre dans . Un graphe biparti permet notamment de représenter une relation binaire. Il existe plusieurs façons de caractériser un graphe biparti. Par le nombre chromatique Les graphes bipartis sont les graphes dont le nombre chromatique est inférieur ou égal à 2. Par la longueur des cycles Un graphe est biparti si et seulement s'il ne contient pas de cycle impair.
Graphe cubiqueEn théorie des graphes, une branche des mathématiques, un graphe cubique est un graphe régulier de degré 3. En d'autres termes, c'est un graphe dans lequel il y a exactement trois arêtes incidentes à chaque sommet. Le graphe complet K4 est le plus petit graphe cubique. Le graphe biparti complet K3,3 est le plus petit graphe cubique non-planaire. Le graphe de Petersen est le plus petit graphe cubique de maille 5. Le graphe de Heawood est le plus petit graphe cubique de maille 6.
Eulerian pathIn graph theory, an Eulerian trail (or Eulerian path) is a trail in a finite graph that visits every edge exactly once (allowing for revisiting vertices). Similarly, an Eulerian circuit or Eulerian cycle is an Eulerian trail that starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Königsberg problem in 1736. The problem can be stated mathematically like this: Given the graph in the image, is it possible to construct a path (or a cycle; i.
Graph operationsIn the mathematical field of graph theory, graph operations are operations which produce new graphs from initial ones. They include both unary (one input) and binary (two input) operations. Unary operations create a new graph from a single initial graph. Elementary operations or editing operations, which are also known as graph edit operations, create a new graph from one initial one by a simple local change, such as addition or deletion of a vertex or of an edge, merging and splitting of vertices, edge contraction, etc.
Coloration de listevignette|301x301px| Une instance de coloration de liste du graphe biparti complet K 3,27 avec trois couleurs par sommet. Pour tout choix de couleurs des trois sommets centraux, l'un des 27 sommets extérieurs ne peut être coloré, ce qui montre que le nombre chromatique de liste de K 3,27 est au moins quatre. En théorie des graphes, la coloration de liste est une coloration des sommets d'un graphe où la couleur de chaque sommet est restreinte à une liste de couleurs autorisées.
Coloration fractionnairedroite|vignette| 5: 2-coloration du graphe dodécaédrique. Il n'existe pas de 4: 2-coloration de ce graphe. En théorie des graphes, la coloration fractionnaire est une généralisation de la coloration des graphes ordinaire. Dans une coloration de graphe traditionnelle, une couleur est affectée à chaque sommet d'un graphe, et deux sommets adjacents ne doivent pas avoir la même couleur. Dans une coloration fractionnaire, un ensemble de couleurs est affecté à chaque sommet du graphe.
HypergrapheLes hypergraphes sont des objets mathématiques généralisant la notion de graphe. Ils ont été nommés ainsi par Claude Berge dans les années 1960. Les hypergraphes généralisent la notion de graphe non orienté dans le sens où les arêtes ne relient plus un ou deux sommets, mais un nombre quelconque de sommets (compris entre un et le nombre de sommets de l’hypergraphe). Certains théorèmes de la théorie des graphes se généralisent naturellement aux hypergraphes, par exemple le théorème de Ramsey.