**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Publication# Experimental investigation into localized instabilities of mixed Rayleigh-Bénard-Poiseuille convection

Résumé

An experimental study of the stability of the Rayleigh-Bénard-Poiseuille flow was performed in a large transverse aspect ratio channel. The onset for the transverse thermo-convective rolls was determined as a function of the Reynolds number for two different fluids (water: Pr = 6.5 and mineral oil: Pr = 450). Then, the system impulse response was studied and a good agreement with theory was found for the convective/absolute instability transition. Finally the response of the system to localized heating was observed and compared with analytical and numerical results by Martinand, Carrière and Monkewitz (2004 & 2006): experimental thermo-convective global modes are found to correspond to the saturated "steep" variety constructed by Pier, Huerre and Chomaz (2001).

Official source

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Concepts associés

Chargement

Publications associées

Chargement

Publications associées (6)

Chargement

Chargement

Chargement

Concepts associés (8)

Nombre de Reynolds

En mécanique des fluides, le , noté \mathrm{Re}, est un nombre sans dimension caractéristique de la transition laminaire-turbulent. Il est mis en évidence en par Osborne Reynolds.
Le

Analyse numérique

L’analyse numérique est une discipline à l'interface des mathématiques et de l'informatique. Elle s’intéresse tant aux fondements qu’à la mise en pratique des méthodes permettant de résoudre, par des

Instabilité

État de déséquilibre dynamique ou thermique de l'atmosphère, qui détermine les mouvements verticaux ascendants.
-Larrouse
Physique
Électricité

- Instabilité électrotherm

The 3DVAR filter is prototypical of methods used to combine observed data with a dynamical system, online, in order to improve estimation of the state of the system. Such methods are used for high dimensional data assimilation problems, such as those arising in weather forecasting. To gain understanding of filters in applications such as these, it is hence of interest to study their behaviour when applied to infinite dimensional dynamical systems. This motivates study of the problem of accuracy and stability of 3DVAR filters for the Navier- Stokes equation. We work in the limit of high frequency observations and derive continuous time filters. This leads to a stochastic partial differential equation (SPDE) for state estimation, in the form of a dampeddriven Navier-Stokes equation, with mean-reversion to the signal, and spatially-correlated time-white noise. Both forward and pullback accuracy and stability results are proved for this SPDE, showing in particular that when enough low Fourier modes are observed, and when the model uncertainty is larger than the data uncertainty in these modes (variance inflation), then the filter can lock on to a small neighbourhood of the true signal, recovering from order one initial error, if the error in the observations modes is small. Numerical examples are given to illustrate the theory.

2012In this thesis we address the numerical approximation of the incompressible Navier-Stokes equations evolving in a moving domain with the spectral element method and high order time integrators. First, we present the spectral element method and the basic tools to perform spectral discretizations of the Galerkin or Galerkin with Numerical Integration (G-NI) type. We cover a large range of possibilities regarding the reference elements, basis functions, interpolation points and quadrature points. In this approach, the integration and differentiation of the polynomial functions is done numerically through the help of suitable point sets. Regarding the differentiation, we present a detailed numerical study of which points should be used to attain better stability (among the choices we present). Second, we introduce the incompressible steady/unsteady Stokes and Navier-Stokes equations and their spectral approximation. In the unsteady case, we introduce a combination of Backward Differentiation Formulas and an extrapolation formula of the same order for the time integration. Once the equations are discretized, a linear system must be solved to obtain the approximate solution. In this context, we consider the solution of the whole system of equations combined with a block type preconditioner. The preconditioner is shown to be optimal in terms of number of iterations used by the GMRES method in the steady case, but not in the unsteady one. Another alternative presented is to use algebraic factorization methods of the Yosida type and decouple the calculation of velocity and pressure. A benchmark is also presented to access the numerical convergence properties of this type of methods in our context. Third, we extend the algorithms developed in the fixed domain case to the Arbitrary Lagrangian Eulerian framework. The issue of defining a high order ALE map is addressed. This allows to construct a computational domain that is described with curved elements. A benchmark using a direct method to solve the linear system or the Yosida-q methods is presented to show the convergence orders of the method proposed. Finally, we apply the developed method with an implicit fully coupled and semi-implicit approach, to solve a fluid-structure interaction problem for a simple 2D hemodynamics example.

Emeric Grandjean, Peter Monkewitz

The stability of the Rayleigh-Benard-Poiseuille flow in a channel with large transverse aspect ratio (ratio of width to vertical channel height) is studied experimentally. The onset of thermal convection in the form of 'transverse rolls' (rolls with axes perpendicular to the Poiscuille flow direction) is determined in the Reynolds-Rayleigh number plane for two different working fluids: water and mineral oil with Prandtl numbers of approximately 6.5 and 450, respectively. By analysing experimental realizations of the system Impulse response it is demonstrated that the observed onset of transverse rolls corresponds to their transition from convective to absolute instability. Finally, the system response to localized patches of supercriticality (in practice local 'hot spots') is observed and compared with analytical and numerical results of Martinand, Carriere & Monkewitz (J. Fluid Mech., vol. 502, 2004, p. 175 and vol. 551, 2006, p. 275). The experimentally observed two-dimensional saturated global modes associated with these patches appear to be of the 'steep' variety, analogous to the one-dimensional steep nonlinear modes of Pier, Huerre & Chomaz (Physica D, vol. 148, 2001, p. 49).