Une variété algébrique est, de manière informelle, l'ensemble des racines communes d'un nombre fini de polynômes en plusieurs indéterminées. C'est l'objet d'étude de la géométrie algébrique. Les schémas sont des généralisations des variétés algébriques.
Il y a deux points de vue (essentiellement équivalents) sur les variétés algébriques : elles peuvent être définies comme des schémas de type fini sur un corps (langage de Grothendieck), ou bien comme la restriction d'un tel schéma au sous-ensemble des points fermés. On utilise ici le deuxième point de vue, plus classique.
Une variété algébrique est, grossièrement, une réunion finie de variétés affines. Elle peut être vue comme un espace topologique muni de cartes locales qui sont des variétés affines, et dont les applications de transition sont des applications polynomiales.
L'espace topologique sous-jacent d'une variété algébrique est localement un ensemble algébrique affine lorsque le corps de base est algébriquement clos.
On fixe un corps k. Un espace localement annelé en k-algèbres est constitué d'un espace topologique X et d'un faisceau de k-algèbres sur X tel que les germes aux points x de X sont des anneaux locaux.
Une variété algébrique sur k est un espace localement annelé en k-algèbres qui admet un recouvrement fini par des ouverts affines (c'est-à-dire que l'espace est une variété affine). Bien que la structure d'une variété algébrique dépende du faisceau structural , notamment pour les variétés non réduites,
on note généralement une variété algébrique simplement par X sans .
Si U est une partie ouverte de X, les éléments de l'anneau s'appellent les fonctions régulières sur U. Dans des situations favorables, les fonctions régulières s'identifient à des applications de U dans k.
Exemples
Les variétés affines sont par définition des variétés algébriques.
Les variétés projectives sont des variétés algébriques. Une variété projective est affine si et seulement si elle est de dimension 0, c'est-à-dire consiste en un nombre fini de points.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Explore les variétés algébriques en algèbre linéaire, en se concentrant sur leur nature, leurs déterminants, leur irréductibilité, leurs propriétés premières et leur théorie de la représentation géométrique.
Le théorème des zéros de Hilbert, parfois appelé Nullstellensatz, est un théorème d'algèbre commutative qui est à la base du lien entre les idéaux et les variétés algébriques. Il a été démontré par le mathématicien allemand David Hilbert. Une algèbre de type fini sur K est un anneau quotient d'un anneau de polynômes K[X_1,...,X_n] par un idéal. Sa structure de K-algèbre est induite par celle de K[X_1,...,X_n]. Il existe plusieurs formulations du théorème des zéros de Hilbert. Théorème 1 (Lemme de Zariski).
La géométrie algébrique est un domaine des mathématiques qui, historiquement, s'est d'abord intéressé à des objets géométriques (courbes, surfaces...) composés des points dont les coordonnées vérifiaient des équations ne faisant intervenir que des sommes et des produits (par exemple le cercle unité dans le plan rapporté à un repère orthonormé admet pour équation ). La simplicité de cette définition fait qu'elle embrasse un grand nombre d'objets et qu'elle permet de développer une théorie riche.
En géométrie algébrique et en théorie des catégories, le terme topologie de Zariski peut désigner quatre notions proches : une certaine topologie définie sur une variété algébrique. Les fermés de cette topologie sont les ensembles algébriques ; une topologie définie de manière analogue sur le spectre premier d'un anneau commutatif ; une topologie définie sur un schéma, qui, localement, provient de la topologie de Zariski définie sur un spectre d'anneau ; une topologie de Grothendieck sur un site.
In this seminar we will study toric varieties, a well studied class of algebraic varieties which is ubiquitous in algebraic geometry, but also relevant in theoretical physics and combinatorics.
This course is aimed to give students an introduction to the theory of algebraic curves, with an emphasis on the interplay between the arithmetic and the geometry of global fields. One of the principl
Algebraic geometry is the common language for many branches of modern research in mathematics. This course gives an introduction to this field by studying algebraic curves and their intersection theor
The combination of palladium salts and bipyridyl ligands can lead to the formation of a large variety of coordination complexes, with different shapes and sizes, displaying a very versatile host-guest chemistry. Increasing their structural complexity remai ...
EPFL2024
We develop a very general version of the hyperbola method which extends the known method by Blomer and Brudern for products of projective spaces to complete smooth split toric varieties. We use it to count Campana points of bounded log-anticanonical height ...
We introduce robust principal component analysis from a data matrix in which the entries of its columns have been corrupted by permutations, termed Unlabeled Principal Component Analysis (UPCA). Using algebraic geometry, we establish that UPCA is a well-de ...