Étude du petit mondeLe « phénomène du petit monde » (appelé aussi effet du petit monde également connu sous le vocable « paradoxe de Milgram » car ses résultats semblent contraires à l'intuition) est l'hypothèse que chacun puisse être relié à n'importe quel autre individu par une courte chaîne de relations sociales. Ce concept reprend, après l'expérience du petit monde, conduite en 1967 par le psychosociologue Stanley Milgram, le concept de « six degrés de séparation », formulé par le Hongrois Frigyes Karinthy en 1929.
Réseau socialEn sciences humaines et sociales, l'expression réseau social désigne un agencement de liens entre des individus ou des organisations, constituant un groupement qui a un sens : la famille, les collègues, un groupe d'amis, une communauté, etc. L'anthropologue australien John Arundel Barnes a introduit l'expression en 1954. L'analyse des réseaux sociaux est devenue une spécialité universitaire dans le champ de la sociologie, se fondant sur la théorie des réseaux et l'usage des graphes.
Réseau complexeEn théorie des graphes, un réseau complexe est un réseau possédant une architecture et une topologie complexe et irrégulière. Comme tous les réseaux, ils sont composés de nœuds (ou sommets ou points) représentant des objets, interconnectés par des liens (ou arêtes ou lignes). Ces réseaux sont des représentations abstraites des relations principalement présentes dans la vie réelle dans une grande diversité de systèmes biologiques et technologiques.
Synchronisation (multitâches)En programmation concurrente, la synchronisation se réfère à deux concepts distincts mais liés : la synchronisation de processus et la synchronisation de données. La synchronisation de processus est un mécanisme qui vise à bloquer l'exécution de certains processus à des points précis de leur flux d'exécution, de manière que tous les processus se rejoignent à des étapes relais données, tel que prévu par le programmeur. La synchronisation de données, elle, est un mécanisme qui vise à conserver la cohérence des données telles que vues par différents processus, dans un environnement multitâche.
Réseau invariant d'échelleUn réseau invariant d'échelle (ou réseau sans échelle, ou encore scale-free network en anglais) est un réseau dont les degrés suivent une loi de puissance. Plus explicitement, dans un tel réseau, la proportion de nœuds de degré k est proportionnelle à pour grand, où est un paramètre (situé entre 2 et 3 pour la plupart des applications). Beaucoup de réseaux, comme le réseau du web, les réseaux sociaux et les réseaux biologiques semblent se comporter comme des réseaux invariants d'échelle, d'où l'importance de ce modèle.
Synchronisation d'horlogesLa synchronisation d'horloges est un mécanisme permettant à deux systèmes distincts d'être synchronisés, c'est-à-dire d'avoir une différence entre leurs temps subjectifs la plus faible possible. En sciences de l'information (Informatique, télécommunications et traitement du signal), le temps est une notion omniprésente.
Optimisation convexevignette|320x320px|Optimisation convexe dans un espace en deux dimensions dans un espace contraint L'optimisation convexe est une sous-discipline de l'optimisation mathématique, dans laquelle le critère à minimiser est convexe et l'ensemble admissible est convexe. Ces problèmes sont plus simples à analyser et à résoudre que les problèmes d'optimisation non convexes, bien qu'ils puissent être NP-difficile (c'est le cas de l'optimisation copositive). La théorie permettant d'analyser ces problèmes ne requiert pas la différentiabilité des fonctions.
Heun's methodIn mathematics and computational science, Heun's method may refer to the improved or modified Euler's method (that is, the explicit trapezoidal rule), or a similar two-stage Runge–Kutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Both variants can be seen as extensions of the Euler method into two-stage second-order Runge–Kutta methods.
Méthode de JacobiLa méthode de Jacobi, due au mathématicien allemand Karl Jacobi, est une méthode itérative de résolution d'un système matriciel de la forme Ax = b. Pour cela, on utilise une suite x qui converge vers un point fixe x, solution du système d'équations linéaires. On cherche à construire, pour x donné, la suite x = F(x) avec . où est une matrice inversible. où F est une fonction affine. La matrice B = MN est alors appelée matrice de Jacobi.
Optimisation (mathématiques)L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.