Résumé
In mathematics and computational science, Heun's method may refer to the improved or modified Euler's method (that is, the explicit trapezoidal rule), or a similar two-stage Runge–Kutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Both variants can be seen as extensions of the Euler method into two-stage second-order Runge–Kutta methods. The procedure for calculating the numerical solution to the initial value problem: by way of Heun's method, is to first calculate the intermediate value and then the final approximation at the next integration point. where is the step size and . Euler's method is used as the foundation for Heun's method. Euler's method uses the line tangent to the function at the beginning of the interval as an estimate of the slope of the function over the interval, assuming that if the step size is small, the error will be small. However, even when extremely small step sizes are used, over a large number of steps the error starts to accumulate and the estimate diverges from the actual functional value. Where the solution curve is concave up, its tangent line will underestimate the vertical coordinate of the next point and vice versa for a concave down solution. The ideal prediction line would hit the curve at its next predicted point. In reality, there is no way to know whether the solution is concave-up or concave-down, and hence if the next predicted point will overestimate or underestimate its vertical value. The concavity of the curve cannot be guaranteed to remain consistent either and the prediction may overestimate and underestimate at different points in the domain of the solution. Heun's Method addresses this problem by considering the interval spanned by the tangent line segment as a whole. Taking a concave-up example, the left tangent prediction line underestimates the slope of the curve for the entire width of the interval from the current point to the next predicted point.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.