Publication

Interaction between a surface dielectric barrier discharge and transonic airflows

Samantha Pavon
2008
Thèse EPFL
Résumé

The use of plasmas in aerodynamics has become a recent topic of interest. The potentialities of different types of plasmas are being investigated for low velocity and high velocity flow control, as well as for plasma-assisted combustion. Dielectric barrier discharges (DBDs) are good candidates since the transition of the glow or filamentary discharge to an arc is prevented by the dielectric barrier. Moreover, surface DBDs allow to ionize the gas very close to the dielectric surface and can be used to ionize the boundary layer around an object immersed in a flow. The research in flow control has basically followed two main paths: the study of DBDs in low-speed airflows and the study of volume glow or corona discharges in supersonic airflows. Until today, there has been an important technological barrier in experimental investigations with surface DBDs. Atmospheric pressure surface DBDs in air have been difficult to maintain for long operation times, typically several hours, because reactive species created in the plasma (for example atomic oxygen) generate intensive etching of the electrode and dielectric materials. Oxidation of the electrodes or reduction of the dielectric thickness will eventually lead to plasma extinction or arcing respectively. This important issue has prevented detailed studies of DBDs in extreme environment, namely in high-speed airflows. In the present work, a solution to this technological problem has been found and is presented. Low temperature co-fireable ceramic (LTCC) technology allows, for the first time, to fully encapsulate the electrodes in a ceramic matrix and maximize the lifetime of the DBD system. Encapsulation improves the reproducibility of the experiments. Moreover, the plate can be manufactured in a curved shape. This technological advance permits, in the frame of the research presented here, to carry out a detailed experimental investigation of DBDs in high-speed flows. The goal of this experimental research is to improve the physical understanding of the interaction between a local atmospheric discharge, causing a localized weak ionization of the surrounding airflow, and the shock wave structure in transonic and supersonic flows typical for aeronautic applications. The fundamental nature of the research makes it relevant in a large domain of applications such as sonic boom alleviation, the reduction of aerodynamic losses (drag reduction) or combustion improvement. The surface dielectric barrier discharge is first characterized without airflow in order to understand the influence of the applied electrical conditions and the structure of the DBD plate on the discharge regime its spatial distribution. Current curves and photomultiplier measurements show that the DBD comprises a filamentary and a continuous (glow- or corona-like) component. Increasing the applied voltage ramp (dU2/dt) results in an increase in the filament generation rate and current peak amplitude. The geometry of the electrodes has little effect on the burning voltage but plays a role in the filament generation rate. Encapsulation reduces the rate of filament production and the expansion of the plasma around the upper electrode but it generates a more uniform distribution of the plasma on the surface and as a function of time. The behavior of the surface DBD in a high-speed air flow is first studied in a simple aerodynamic configuration: a flat DBD plate mounted on one wall of the nozzle. It is demonstrated that the DBD generated by this system can be sustained in supersonic airflows up to free stream Mach numbers of M∞=1.1. Current and time-resolved light emission measurements (photomultiplier) show that there are modifications in the discharge regime at high airflow velocity. For overall discharge, the filamentary to continuous component ratio is increased with increasing flow velocities, the plasma becomes relatively more filamentary. For individual microdischarges, the light pulse emission duration is reduced by one order of magnitude. These measurements indicate that there is a change in the breakdown mechanism and it is proposed that a transition from Townsend breakdown to streamer breakdown occurs when the airflow velocity is increased. The inverse problem is then addressed, the effects of the DBD on the airflow, in a case where the plasma is generated on the surface of an airfoil and interacts with the shock structure in the transonic flow field around that airfoil. Although no significant effects of the surface DBD on the normal shock generated in the transonic flow have been observed with the Schlieren visualizations and far-field pressure measurements, the flow modifies the plasma characteristics in a very significant way. In addition to the effects of the flow velocity (as observed in the flat plate experiment), the significant variation of pressure on the surface of the airfoil plays an important role. Decreasing pressure increases the number of filaments and favors high current peak generation. It shows that the discharge characteristics cannot be completely controlled and that they depend on the flow field.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (44)
État plasma
thumb|upright|Le soleil est une boule de plasma. thumb|Lampe à plasma.|168x168px thumb|upright|Les flammes de haute température sont des plasmas. L'état plasma est un état de la matière, tout comme l'état solide, l'état liquide ou l'état gazeux, bien qu'il n'y ait pas de transition brusque pour passer d'un de ces états au plasma ou réciproquement. Il est visible sur Terre, à l'état naturel, le plus souvent à des températures élevées favorables aux ionisations, signifiant l’arrachement d'électrons aux atomes.
Décharge à barrière diélectrique
vignette|un appareil DBD montrant le générateur de courant alternatif haute tension, l'enceinte en verre, la connexion HT, la connexion à la terre, la couche diélectrique et la décharge par gaz La décharge à barrière diélectrique (aussi connue sous le nom de décharge contrôlée par barrière diélectrique, DBD, ou décharge silencieuse) est une décharge électrique créée entre deux électrodes séparées par un matériau diélectrique. De manière générale, la décharge est créée à l'aide d'un courant alternatif appliqué aux bornes des électrodes.
Transsonique
L'écoulement autour d'une aile passe du régime subsonique au régime transsonique lorsqu'apparaît une zone dans laquelle la vitesse locale devient égale à la célérité du son. Le nombre de Mach correspondant, inférieur à 1, s'appelle le Mach critique. Pour la clarté de l'exposé il est commode de se placer sur l'aile fixe comme dans une soufflerie qui produit un écoulement d'air autour d'une maquette fixe. nombre de Mach critique Pour qu'une aile développe une portance, son profil est étudié pour dévier l'air tout en minimisant la traînée induite.
Afficher plus
Publications associées (103)

Characterization of low-temperature plasmas generated by dielectric barrier discharges for bacterial inactivation

Lorenzo Ibba

Low-temperature plasmas (LTPs) at atmospheric pressure hold great promise for disinfection and sterilization applications. When compared to traditional sterilization technologies like autoclaving, LTPs may offer several benefits, including reduced energy c ...
EPFL2024

Inversing the actuation cycle of dielectric elastomer actuators for a facial prosthesis

Yves Perriard, Yoan René Cyrille Civet, Paolo Germano, Alexis Boegli, Thomas Guillaume Martinez, Stefania Maria Aliki Konstantinidi, Quentin Philippe Mario De Menech

Dielectric Elastomer Actuators (DEAs) are a type of smart material described as compliant capacitors. They show impressive performances as soft actuators, such as a high strain and fast response. Nonetheless, replicating natural muscle function with DEAs h ...
Society of Photo-Optical Instrumentation Engineers (SPIE)2024

Breakdown development in a nanosecond pulsed dielectric barrier discharge in humid air in plane-to-plane geometry

Ivo Furno, Xin Yang, Lorenzo Ibba

We used the ns electric field induced second harmonic (EFISH) generation diagnostic to measure the electric field evolution in a 200 ns pulse, dielectric barrier, plane-to-plane discharge in humid air, on the time scale shorter than the laser pulse duratio ...
Bristol2023
Afficher plus
MOOCs associés (9)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.