Control of legged locomotion using dynamical systems
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
: On the hardware level, we are proposing and testing a bio-inspired quadruped robot design (Oncilla robot), based on light-weight, compliant, and three-segmented legs. Our choice of placing the compliance such that it is spanning two joints enforces a non ...
We are proposing and testing two model-free approaches for locomotion control of a light-weight, compliant, quadruped robot: open loop central pattern generators (CPG), and open and closed- loop dynamical movement primitives (DMP). We are presenting two di ...
A robot properly introduced into an animal group, accepted by the animals, and capable of interacting with them is a very powerful tool for advanced ethological research, particularly in gregarious animals. Moreover, such robots can find an application in ...
This paper describes a method to identify the extrinsic parameters of RGB-D cameras mounted on legged robots. Since the calculation of the parameters is based on the detection of the robots feet in the camera images, no special calibration objects are requ ...
This paper presents the actuation system of the robotic leg ScarlETH. It was developed specifically for a quadrupedal robot and is designed to achieve fast position control as well as accurate joint torque control. It introduces strong passive dynamics to ...
Spring-like leg behavior was found in the global dynamics of human and animal running in sagittal plane. The corresponding template model, the conservative spring-loaded inverted pendulum (SLIP), shows stability for a large range of speeds and is, therefor ...
This work introduces a framework for the creation and analysis of efficient gaits for legged systems based on the exploitation of natural dynamics. It summarizes the theory behind hybrid dynamic modeling, the identification of optimal periodic motions with ...
A single leg hopping robot has been constructed which includes a clutch in series with the hip motor and a prototype Linear Multi-Modal Actuator (LMMA) at the knee. The single leg will be used to test how the different actuation methods can improve the beh ...
Stable locomotion that tolerates parameter variations is an important feature for legged robots. In this paper we introduce a locomotion control framework for legged robots that combines the well-known spring-loaded inverted pendulum (SLIP) with active hip ...
Dynamic manipulation of an active object is introduced as a general model of hopping and juggling tasks. In this setting, juggling and hopping are two extreme cases of this general model. Behavioral resemblance of these two tasks is afterwards extended to ...