Control of legged locomotion using dynamical systems
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Aquatic stepping gaits in animals arguably display higher speed performance as well as energetic efficiency compared to other gaits using the limbs (i.e walking). This suggest that the foot structure and function contributes at a great extent on the propul ...
Despite enhancements in the development of robotic systems, the energy economy of today's robots lags far behind that of biological systems. This is in particular critical for untethered legged robot locomotion. To elucidate the current stage of energy eff ...
Sprawling posture robots are characterized by upper limb segments protruding horizontally from the body, resulting in lower body height and wider support on the ground. Combined with an actuated segmented spine and tail, such morphology resembles that of s ...
Thanks to better actuator technologies and control algorithms, humanoid robots to date can perform a wide range of locomotion activities outside lab environments. These robots face various control challenges like high dimensionality, contact switches durin ...
Most current drones are designed with a static morphology aimed at exploiting a single locomotion mode. This results in limited versatility and adaptability to multi-domain environments, such as those encountered in rescue missions, agriculture and inspect ...
Bacteria can exploit mechanics to display remarkable plasticity in response to locally changing physical and chemical conditions. Compliant structures play a notable role in their taxis behavior, specifically for navigation inside complex and structured en ...
Agile quadrupedal locomotion in animals and robots is yet to be fully understood, quantified
or achieved. An intuitive notion of agility exists, but neither a concise definition nor a common
benchmark can be found. Further, it is unclear, what minimal leve ...
This work investigates the usage of compliant universal grippers as a novel foot design for legged locomotion. The method of jamming of granular media in the universal grippers is characterized by having two distinct states: a soft, fluid-like state which ...
Legged machines have the potential to traverse terrain that wheeled robots cannot. These capabilities are useful in scenarios such as stairs in homes or debris-filled disaster scenes, such as earthquake areas. This thesis develops one of the algorithms nec ...
Gaits in legged robots are often hand tuned and time based, either explicitly or through an internal clock, for instance, in the form of central pattern generators. This strategy requires trial and error to identify leg timings, which may not be suitable i ...