Conditional probability tableIn statistics, the conditional probability table (CPT) is defined for a set of discrete and mutually dependent random variables to display conditional probabilities of a single variable with respect to the others (i.e., the probability of each possible value of one variable if we know the values taken on by the other variables). For example, assume there are three random variables where each has states.
Radar de régulation de distanceUn radar de régulation de distance (en anglais, adaptive cruise control, ou ACC) est un ajout au système de régulateur automatique de vitesse que l'on retrouve sur certaines automobiles modernes. L'appareil utilise un radar ou un laser pour mesurer la distance et la vitesse d'approche d'un véhicule précédant l'utilisateur ce qui permet d'ajuster la vitesse automatiquement afin de maintenir une distance de sécurité pour éviter la collision, puis de reprendre la vitesse de consigne en mémoire lorsqu'il n'y a plus d'obstacle ou de véhicule dans la distance programmée.
Multinomial logistic regressionIn statistics, multinomial logistic regression is a classification method that generalizes logistic regression to multiclass problems, i.e. with more than two possible discrete outcomes. That is, it is a model that is used to predict the probabilities of the different possible outcomes of a categorically distributed dependent variable, given a set of independent variables (which may be real-valued, binary-valued, categorical-valued, etc.).
Predictive codingIn neuroscience, predictive coding (also known as predictive processing) is a theory of brain function which postulates that the brain is constantly generating and updating a "mental model" of the environment. According to the theory, such a mental model is used to predict input signals from the senses that are then compared with the actual input signals from those senses. With the rising popularity of representation learning, the theory is being actively pursued and applied in machine learning and related fields.
Automated machine learningAutomated machine learning (AutoML) is the process of automating the tasks of applying machine learning to real-world problems. AutoML potentially includes every stage from beginning with a raw dataset to building a machine learning model ready for deployment. AutoML was proposed as an artificial intelligence-based solution to the growing challenge of applying machine learning. The high degree of automation in AutoML aims to allow non-experts to make use of machine learning models and techniques without requiring them to become experts in machine learning.
Alarme anti-intrusionUne alarme anti-intrusion est un système conçu pour détecter toute entrée non autorisée dans un bâtiment ou une zone. vignette|Centrale d'alarme L'alarme pour prévenir certains cambriolages est constituée par des détecteurs de mouvement placés à la porte d'entrée et éventuellement aux fenêtres du local à protéger. Si elle est amorcée, toute personne qui pénètre les lieux dispose de plusieurs secondes pour composer un code permettant de le désactiver, faute de quoi une sirène se déclenche afin de faire fuir les intrus et de prévenir les riverains.
Classification et catégorisation de documentsLa classification et catégorisation de documents est l'activité du traitement automatique des langues naturelles qui consiste à classer de façon automatique des ressources documentaires, généralement en provenance d'un corpus. Cette classification peut prendre une infinité de formes. On citera ainsi la classification par genre, par thème, ou encore par opinion. La tâche de classification est réalisée avec des algorithmes spécifiques, mis en œuvre par des systèmes de traitement de l'information.
Alarm managementAlarm management is the application of human factors and ergonomics along with instrumentation engineering and systems thinking to manage the design of an alarm system to increase its usability. Most often the major usability problem is that there are too many alarms annunciated in a plant upset, commonly referred to as alarm flood (similar to an interrupt storm), since it is so similar to a flood caused by excessive rainfall input with a basically fixed drainage output capacity.
Kappa de CohenEn statistique, la méthode du κ (kappa) mesure l’accord entre observateurs lors d'un codage qualitatif en catégories. L'article introduisant le κ a pour auteur Jacob Cohen – d'où sa désignation de κ de Cohen – et est paru dans le journal Educational and Psychological Measurement en 1960. Le κ est une mesure d'accord entre deux codeurs seulement. Pour une mesure de l'accord entre plus de deux codeurs, on utilise le κ de Fleiss (1981). Le calcul du κ se fait de la manière suivante : où Pr(a) est la proportion de l'accord entre codeurs et Pr(e) la probabilité d'un accord aléatoire.
Partitionnement de donnéesvignette|upright=1.2|Exemple de clustering hiérarchique. Le partitionnement de données (ou data clustering en anglais) est une méthode en analyse des données. Elle vise à diviser un ensemble de données en différents « paquets » homogènes, en ce sens que les données de chaque sous-ensemble partagent des caractéristiques communes, qui correspondent le plus souvent à des critères de proximité (similarité informatique) que l'on définit en introduisant des mesures et classes de distance entre objets.