Evaluation of binary classifiersThe evaluation of binary classifiers compares two methods of assigning a binary attribute, one of which is usually a standard method and the other is being investigated. There are many metrics that can be used to measure the performance of a classifier or predictor; different fields have different preferences for specific metrics due to different goals. For example, in medicine sensitivity and specificity are often used, while in computer science precision and recall are preferred.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Système anti-collisionUn système anti-collision, ou dispositif d'évitement des collisions est un système de sécurité active conçu pour réduire la gravité des accidents des véhicules motorisés. La dénomination du système anti-collision est reprise du domaine aéronautique où ont fait leur preuve certains systèmes parmi le TCAS (en français « système d'alerte de trafic et d'évitement de collision »), l'Airborne collision avoidance system, Obstacle Collision Avoidance System ou le Portable collision avoidance system.
Activity recognitionActivity recognition aims to recognize the actions and goals of one or more agents from a series of observations on the agents' actions and the environmental conditions. Since the 1980s, this research field has captured the attention of several computer science communities due to its strength in providing personalized support for many different applications and its connection to many different fields of study such as medicine, human-computer interaction, or sociology.
Exactitude et précisionvignette|Schéma de l'exactitude et la précision appliquée à des lancers de fléchettes. Dans la mesure d'un ensemble, l'exactitude est la proximité des mesures à une valeur spécifique, tandis que la précision est la proximité des mesures les unes par rapport aux autres. L'exactitude a deux définitions : Plus communément, il s'agit d'une description des erreurs systématiques, une mesure du biais statistique ; une faible précision entraîne une différence entre un résultat et une valeur « vraie ».
Conditional probability distributionIn probability theory and statistics, given two jointly distributed random variables and , the conditional probability distribution of given is the probability distribution of when is known to be a particular value; in some cases the conditional probabilities may be expressed as functions containing the unspecified value of as a parameter. When both and are categorical variables, a conditional probability table is typically used to represent the conditional probability.
Sensibilité et spécificitéEn statistique, la sensibilité (ou sélectivité) d'un test mesure sa capacité à donner un résultat positif lorsqu'une hypothèse est vérifiée. Elle s'oppose à la spécificité, qui mesure la capacité d'un test à donner un résultat négatif lorsque l'hypothèse n'est pas vérifiée. Ces notions sont d'une importance majeure en épidémiologie et en , notamment au travers des courbes ROC. Cet article présente ces notions dans le cadre de l'application en épidémiologie.
Précision et rappelvignette|350px|Précision et rappel (« recall »). La précision compte la proportion d'items pertinents parmi les items sélectionnés alors que le rappel compte la proportion d'items pertinents sélectionnés parmi tous les items pertinents sélectionnables. Dans les domaines de la reconnaissance de formes, de la recherche d'information et de la classification automatique, la précision (ou valeur prédictive positive) est la proportion des items pertinents parmi l'ensemble des items proposés ; le rappel (ou sensibilité) est la proportion des items pertinents proposés parmi l'ensemble des items pertinents.
Algorithme d'apprentissage incrémentalEn informatique, un algorithme d'apprentissage incrémental ou incrémentiel est un algorithme d'apprentissage qui a la particularité d'être online, c'est-à-dire qui apprend à partir de données reçues au fur et à mesure du temps. À chaque incrément il reçoit des données d'entrées et un résultat, l'algorithme calcule alors une amélioration du calcul fait pour prédire le résultat à partir des données d'entrées.
Bootstrap aggregatingLe bootstrap aggregating, également appelé bagging (de bootstrap aggregating), est un meta-algorithme d'apprentissage ensembliste conçu pour améliorer la stabilité et la précision des algorithmes d'apprentissage automatique. Il réduit la variance et permet d'éviter le surapprentissage. Bien qu'il soit généralement appliqué aux méthodes d'arbres de décision, il peut être utilisé avec n'importe quel type de méthode. Le bootstrap aggregating est un cas particulier de l'approche d'apprentissage ensembliste.