Keypoint Signatures for Fast Learning and Recognition
Publications associées (57)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Effective fall-detection and classification systems are vital in mitigating severe medical and economical consequences of falls to people in the fall risk groups. One class of such systems is based on wearable sensors. While there is a vast amount of acade ...
Early and accurate detection of epileptic seizures is an extremely important therapeutic goal due to the severity of complications it can prevent. To this end, a low-power machine learning-based seizure detection implemented on an FPGA is proposed in this ...
Rationale: Given the expanding number of COVID-19 cases and the potential for new waves of infection, there is an urgent need for early prediction of the severity of the disease in intensive care unit (ICU) patients to optimize treatment strategies.Objecti ...
In high dimension, low sample size (HDLSS) settings, classifiers based on Euclidean distances like the nearest neighbor classifier and the average distance classifier perform quite poorly if differences between locations of the underlying populations get m ...
The researchers used a machine-learning classification approach to better understand neurological features associated with periods of wayfinding uncertainty. The participants (n = 30) were asked to complete wayfinding tasks of varying difficulty in a virtu ...
Scene graph generation (SGG) methods extract relationships between objects. While most methods focus on improving top-down approaches, which build a scene graph based on detected objects from an off-the-shelf object detector, there is a limited amount of w ...
A simple predictive biomarker for fatty liver disease is required for individuals with insulin resistance. Here, we developed a supervised machine learning-based classifier for fatty liver disease using fecal 16S rDNA sequencing data. Based on the Kangbuk ...
Superagers are defined as older adults who have youthful memory performance comparable to that of middle-aged adults. Classifying superagers based on the brain connectome using machine learning modeling can provide important insights on the physiology unde ...
Background. In medicine and other applications, the copying and sharing of data is impractical for a range of well-considered reasons. With federated learning (FL) techniques, machine learning models can be trained on data spread across several locations w ...
Classifiers that can be implemented on chip with minimal computational and memory resources are essential for edge computing in emerging applications such as medical and IoT devices. This paper introduces a machine learning model based on oblique decision ...