Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Effective fall-detection and classification systems are vital in mitigating severe medical and economical consequences of falls to people in the fall risk groups. One class of such systems is based on wearable sensors. While there is a vast amount of academic work on this class of systems, not much effort has been devoted to the investigation of effective and robust algorithms and like-for-like comparison of state-ofthe-art algorithms using a sufficiently large dataset. In this article, fall-direction classification algorithms are presented and compared on an extensive dataset, comprising a total of 1600 fall trials. Eight machine learning classifiers are implemented for fall-direction classification into four basic directions (forward, backward, right, and left). These are, namely, Bayesian decision making (BDM), least squares method (LSM), k-nearest neighbor classifier (k-NN), artificial neural networks (ANNs), support vector machines (SVMs), decision-tree classifier (DTC), random forest (RF), and adaptive boosting or AdaBoost (AB). BDM achieves perfect classification, followed by k-NN, SVM, and RF. Data acquired from only a single motion sensor unit, worn at the waist of the subject, are processed for experimental verification. Four of the classifiers (BDM, LSM, k-NN, and ANN) are modified to handle the presence of data from an unknown class and evaluated on the same dataset. In this robustness analysis, ANN and k-NN yield accuracies above 96.2%. The results obtained in this study are promising in developing real-world fall-classification systems as they enable fast and reliable classification of fall directions.(c) 2021 Elsevier Inc. All rights reserved.
Christian Leinenbach, Sergey Shevchik, Rafal Wróbel, Marc Leparoux
Andrea Wulzer, Alfredo Glioti, Siyu Chen