Robot autonomevignette|exemple de robot autonome de type rover Un robot autonome, également appelé simplement autorobot ou autobot, est un robot qui exécute des comportements ou des tâches avec un degré élevé d'autonomie (sans influence extérieure). La robotique autonome est généralement considérée comme un sous-domaine de l'intelligence artificielle, de la robotique et de l'. Les premières versions ont été proposées et démontrées par l'auteur/inventeur David L. Heiserman.
Dilatation thermiqueLa dilatation thermique est l'expansion à pression constante du volume d'un corps occasionné par son réchauffement, généralement imperceptible. Dans le cas d'un gaz, il y a dilatation à pression constante ou maintien du volume et augmentation de la pression lorsque la température augmente. À l'opposé de la dilatation, un refroidissement provoque une contraction thermique. Dans un solide, les atomes possèdent une énergie thermique et vibrent autour de leur position moyenne.
Robot end effectorIn robotics, an end effector is the device at the end of a robotic arm, designed to interact with the environment. The exact nature of this device depends on the application of the robot. In the strict definition, which originates from serial robotic manipulators, the end effector means the last link (or end) of the robot. At this endpoint, the tools are attached. In a wider sense, an end effector can be seen as the part of a robot that interacts with the work environment.
Bio-inspired roboticsBio-inspired robotic locomotion is a fairly new subcategory of bio-inspired design. It is about learning concepts from nature and applying them to the design of real-world engineered systems. More specifically, this field is about making robots that are inspired by biological systems, including Biomimicry. Biomimicry is copying from nature while bio-inspired design is learning from nature and making a mechanism that is simpler and more effective than the system observed in nature.
Self-reconfiguring modular robotModular self-reconfiguring robotic systems or self-reconfigurable modular robots are autonomous kinematic machines with variable morphology. Beyond conventional actuation, sensing and control typically found in fixed-morphology robots, self-reconfiguring robots are also able to deliberately change their own shape by rearranging the connectivity of their parts, in order to adapt to new circumstances, perform new tasks, or recover from damage.
Degré de liberté (statistiques)En statistiques le degré de liberté (ddl) désigne le nombre de variables aléatoires qui ne peuvent être déterminées ou fixées par une équation (notamment les équations des tests statistiques). Une autre définition est : . Le degré de liberté est égal au nombre d'observations moins le nombre de relations entre ces observations : on pourrait remplacer l'expression « nombre de relations » par « nombre de paramètres à estimer ». Supposons un ensemble de n variables aléatoires, toutes de même loi et indépendantes X,.
Developmental roboticsDevelopmental robotics (DevRob), sometimes called epigenetic robotics, is a scientific field which aims at studying the developmental mechanisms, architectures and constraints that allow lifelong and open-ended learning of new skills and new knowledge in embodied machines. As in human children, learning is expected to be cumulative and of progressively increasing complexity, and to result from self-exploration of the world in combination with social interaction.
Degré de liberté (génie mécanique)En physique, un solide rigide isolé dans l'espace peut se déplacer librement dans un mouvement qu'on peut décomposer suivant 6 transformations géométriques indépendantes (translations et rotations autour d'axes fixes dans trois directions d'une base liée à notre espace à 3 dimensions). Il en est de même d'un solide isolé par rapport à un autre référent. Si ces solides sont liés mécaniquement, certains de ces mouvements élémentaires sont impossibles.
MulticollinearityIn statistics, multicollinearity (also collinearity) is a phenomenon in which one predictor variable in a multiple regression model can be linearly predicted from the others with a substantial degree of accuracy. In this situation, the coefficient estimates of the multiple regression may change erratically in response to small changes in the model or the data. Multicollinearity does not reduce the predictive power or reliability of the model as a whole, at least within the sample data set; it only affects calculations regarding individual predictors.
Lasso (statistiques)En statistiques, le lasso est une méthode de contraction des coefficients de la régression développée par Robert Tibshirani dans un article publié en 1996 intitulé Regression shrinkage and selection via the lasso. Le nom est un acronyme anglais : Least Absolute Shrinkage and Selection Operator. Bien que cette méthode fut utilisée à l'origine pour des modèles utilisant l'estimateur usuel des moindres carrés, la pénalisation lasso s'étend facilement à de nombreux modèles statistiques tels que les modèles linéaires généralisés, les modèles à risque proportionnel, et les M-estimateurs.