Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
The syntheses and single crystal X-ray structural analysis of five novel hetero- and homometallic μ3-oxo trinuclear cluster with the formula [FeIII2MII(μ3-O)(μ-O2CCH3)6(4-Rpy)3] · x(4-Rpy) · y(CH3CN) where R ) Ph for 1(Fe2Mn),2(Fe2Fe), 3(Fe2Co), 4(Fe2Ni) and R ) CF3 for 5(Fe2Co), are reported. The persistence of the structure for compounds 2-5 in dichloromethane solution in the temperature range 190-320 K is demonstrated by 1H and 19F NMR spectroscopy. Even at the lowest temperature, the electron exchange in the homometallic mixed-valence compound 2(Fe2Fe) is in the fast regime at the NMR time scale. Variable temperature and pressure NMR line broadening allowed quantifying the fast coordinated/free 4-Rpy exchanges at the two labile metal centers in these clusters: 2: FeIII(k298/103 s-1 ) 16.6; ΔH‡ ) 60.32 kJ mol-1; ΔS‡ ) + 34.8 J K-1 mol-1; ΔV‡ ) + 12.5 cm3 mol-1); 3: Fe(11.9; 58.92; +30.7; +10.6) and Co (2.8; 68.24; +49.8; +13.9); 4: Fe(12.2; 67.91; +61.0; -) and Ni (0.37;78.62; +67.8; +12.3); 5: Fe (46; 58.21; +39.3; +14.2) and Co (4.7; 55.37; +11.2; +10.9). A limiting D mechanism is assigned to these exchange reactions. This assignment is based on a first-order rate law, the detection of intermediates, the positive and large entropies and volumes of activation. The order of reactivity kCo > kNi is expected for a D mechanism at these metal centers: their low exchange rates are due to their strong binding with the 4-Rpy donor. Surrounded by oxygen donors the d5 iron(III) usually reacts associatively; however, here due to low affinity of this ion for nitrogen the mechanism is D and the rate of exchange is very fast, even faster than on the divalent ions. There is no significant effect of the divalent ion in cluster 2, 3, and 5 on the exchange rates of 4-Phpy at the iron center, which seems to indicate that the specific electronic interactions between the three ions making the clusters do not influence the FeIII-N bond strength.
Pierre-Etienne Bourban, Rajasundar Chandran