Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
La spectroscopie RMN en deux dimensions ou spectroscopie RMN bidimensionnelle ou encore RMN-2D est un ensemble de dispositifs de reconnaissance de relations de proximité, dans l'espace ou à travers les liaisons, entre plusieurs noyaux actifs en RMN. Il s'agit de RMN de corrélation. Dans une expérience de spectroscopie RMN bidimensionnelle, le résultat est un spectre en trois dimensions : le déplacement chimique pour le noyau 1 (δ1), le déplacement chimique pour le noyau 2 (δ2) et l'intensité du signal. Un tel spectre est représenté sur un écran ou une feuille de papier en dessinant les axes δ1 et δ2 dans le plan de l'écran ou de la feuille et en reliant les points d'intensité égale (positive ou négative) par des lignes. Les expériences bidimensionnelles requièrent un certain nombre de cycles de phase, noté « x*n » avec x=16 pour une COSY, sur les anciens spectromètres, ce qui fait que le nombre de scans doit être un multiple de x (16 pour une COSY). Même si la concentration en composé à étudier permettrait de faire un seul scan, on est obligé d'en faire x. L'apparition des gradients de champ a permis de réduire drastiquement ce multiplicateur. Pour une COSY, x passe de 16 à 1, ce qui signifie qu'on peut obtenir le même spectre (et même mieux) en moins de temps. Les expériences existent en deux versions : la version phasée (on détecte la phase des signaux) et non-phasée (même si la phase est détectée, elle n'a aucune signification et l'on traite le spectre de façon à faire disparaître les informations de phase). La version phasée demande plus de temps d'acquisition mais permet, même lorsqu'on la traite comme une version non phasée, une meilleure résolution. D'autre part, certaines expériences doivent être menées dans leur version « phasée ». Dans les expériences bidimensionnelles, au moins un délai entre deux impulsions correspond à la constante de couplage que l'on souhaite observer. Cette valeur établit donc un filtre et certaines corrélations ne seront pas observées.
Jeremy Luterbacher, Stefania Bertella
Paul Joseph Dyson, Farzaneh Fadaei Tirani, Mouna Hadiji
David Lyndon Emsley, Saumya Badoni, Pierrick Berruyer