Résolution chiraleEn stéréochimie, la résolution chirale est la séparation des énantiomères d'une molécule chirale, c'est-à-dire le procédé de séparation d'un composé racémique en ses énantiomères. Un désavantage de la résolution chirale, comparativement à la synthèse asymétrique directe d'un des énantiomères, est qu'elle ne fournit que 50 % du même énantiomère.
StereoisomerismIn stereochemistry, stereoisomerism, or spatial isomerism, is a form of isomerism in which molecules have the same molecular formula and sequence of bonded atoms (constitution), but differ in the three-dimensional orientations of their atoms in space. This contrasts with structural isomers, which share the same molecular formula, but the bond connections or their order differs. By definition, molecules that are stereoisomers of each other represent the same structural isomer.
Énantiomérievignette|Les deux énantiomères du bromochlorofluorométhane. L’énantiomérie est une propriété de certaines molécules stéréoisomères, dont deux des isomères sont l'image l'un de l'autre dans un miroir plan, mais ne sont pas superposables. Une molécule ayant deux énantiomères est dite chirale. En revanche si une molécule est identique à sa propre image dans un miroir, elle est dite achirale. La chiralité peut être due : à un centre stéréogène, comme un atome substitué asymétriquement (avec quatre substituants différents), qui est souvent un atome de carbone ; ou à un axe de chiralité ; ou à un plan de chiralité.
Configuration absoluethumb|R pour rectus (droit) et S pour sinister (gauche). En stéréochimie, la configuration absolue est l'arrangement spatial des atomes d'une molécule chirale ainsi que sa description stéréochimique (par exemple, R, S...) qu'il faut différencier de la conformation de la molécule. En cristallographie, la configuration absolue est une notion importante dans la détermination de structures non centrosymétriques. Dès 1949, Johannes Martin Bijvoet a utilisé pour la première fois en diffraction de rayons X la diffusion anomale afin de déterminer la configuration absolue de molécules.
ÉpimèreDeux épimères sont des diastéréoisomères qui ne diffèrent que par la configuration d'un unique centre asymétrique. Le glucose et le galactose sont par exemple deux épimères, et ont un pouvoir sucrant totalement différent : gauche|sans_cadre|139x139px|Le D-Glucose, en représentation de Haworth sans_cadre|139x139px Le α-D-glucose (à gauche) et le α-D-galactose (à droite), en projection de Haworth, ne diffèrent que par la position du groupe OH (hydroxyle) en position 4.
Spectroscopie des rayons XLa spectroscopie des rayons X rassemble plusieurs techniques de caractérisation spectroscopique de matériaux par excitation par rayons X. Trois familles de techniques sont le plus souvent utilisées. Selon les phénomènes mis en jeu, on distingue trois classes : L'analyse se fait par l'une des deux méthodes suivantes : analyse dispersive en énergie (Energy-dispersive x-ray analysis (EDXA) en anglais) ; analyse dispersive en longueur d'onde (Wavelength dispersive x-ray analysis (WDXA) en anglais).
Spectrométrie de fluorescence des rayons Xthumb|Analyseur portatif (Olympus Delta Professional XRF donnant la quantité de contaminants métalliques ou métalloïdes dans le sol. contaminants préoccupants recherchés sont ici le plomb, le mercure, le cadmium et l'arsenic. La spectrométrie de fluorescence des rayons X (SFX ou FX, ou en anglais XRF pour X-ray fluorescence) est une technique d'analyse chimique utilisant une propriété physique de la matière, la fluorescence de rayons X.
Cristallographie aux rayons XLa cristallographie aux rayons X, radiocristallographie ou diffractométrie de rayons X (DRX, on utilise aussi souvent l'abréviation anglaise XRD pour X-ray diffraction) est une technique d'analyse fondée sur la diffraction des rayons X par la matière, particulièrement quand celle-ci est cristalline. La diffraction des rayons X est une diffusion élastique, c'est-à-dire sans perte d'énergie des photons (longueurs d'onde inchangées), qui donne lieu à des interférences d'autant plus marquées que la matière est ordonnée.
Tube à rayons XLes tubes à rayons X sont des dispositifs permettant de produire des rayons X, en général pour trois types d'applications : radiographie et tomographie (, science des matériaux) ; Cristallographie aux rayons X (diffraction de rayons X, voir aussi l'article Diffractomètre) ; analyse chimique élémentaire par spectrométrie de fluorescence des rayons X. Il existe plusieurs types de tubes. Quel que soit le type de tube, la génération des rayons X se fait selon le même principe.
Hélice alphathumb|redresse|Exemple d'hélice alpha. L’hélice alpha (hélice α) est une structure secondaire courante des protéines. Elle est formée par une chaîne polypeptidique de forme hélicoïdale à pas de rotation droit dans laquelle chaque groupe N-H de la chaîne principale d'un acide aminé forme une liaison hydrogène avec le groupe C=O de la chaîne principale du quatrième acide aminé le précédant. Cette structure secondaire est parfois appelée hélice α de Pauling-Corey-Branson.