Discrete wavelet transformIn numerical analysis and functional analysis, a discrete wavelet transform (DWT) is any wavelet transform for which the wavelets are discretely sampled. As with other wavelet transforms, a key advantage it has over Fourier transforms is temporal resolution: it captures both frequency and location information (location in time). Haar wavelet The first DWT was invented by Hungarian mathematician Alfréd Haar. For an input represented by a list of numbers, the Haar wavelet transform may be considered to pair up input values, storing the difference and passing the sum.
Traitement numérique du signalLe traitement numérique du signal étudie les techniques de traitement (filtrage, compression, etc), d'analyse et d'interprétation des signaux numérisés. À la différence du traitement des signaux analogiques qui est réalisé par des dispositifs en électronique analogique, le traitement des signaux numériques est réalisé par des machines numériques (des ordinateurs ou des circuits dédiés). Ces machines numériques donnent accès à des algorithmes puissants, tel le calcul de la transformée de Fourier.
Quantification (signal)En traitement des signaux, la quantification est le procédé qui permet d'approcher un signal continu par les valeurs d'un ensemble discret d'assez petite taille. On parle aussi de quantification pour approcher un signal à valeurs dans un ensemble discret de grande taille par un ensemble plus restreint. L'application la plus courante de la quantification est la conversion analogique-numérique mais elle doit le développement de sa théorie aux problèmes de quantification pour la compression de signaux audio ou .
Continuous wavelet transformIn mathematics, the continuous wavelet transform (CWT) is a formal (i.e., non-numerical) tool that provides an overcomplete representation of a signal by letting the translation and scale parameter of the wavelets vary continuously. The continuous wavelet transform of a function at a scale (a>0) and translational value is expressed by the following integral where is a continuous function in both the time domain and the frequency domain called the mother wavelet and the overline represents operation of complex conjugate.
JPEGJPEG (sigle de Joint Photographic Experts Group) est une norme qui définit le format d'enregistrement et l'algorithme de décodage pour une représentation numérique compressée d'une image fixe. Les extensions de nom de fichiers les plus communes pour les fichiers employant la compression JPEG sont .jpg et .jpeg, cependant .jpe, .jfif et .jif furent aussi utilisées. JPEG est l’acronyme de Joint Photographic Experts Group. Il s'agit d'un comité d’experts qui édicte des normes de compression pour l’image fixe.
Computational complexityIn computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) and memory storage requirements. The complexity of a problem is the complexity of the best algorithms that allow solving the problem. The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory.
Lempel-Ziv-WelchLZW (pour Lempel-Ziv-Welch) est un algorithme de compression de données sans perte. Il s'agit d'une amélioration de l'algorithme LZ78 inventé par Abraham Lempel et Jacob Ziv en 1978. LZW fut créé en 1984 par Terry Welch, d'où son nom. L'algorithme LZW avait été breveté par la société Unisys (un brevet logiciel valable uniquement aux États-Unis). Il a été utilisé dans les modems (norme V42 bis) et est encore utilisé dans les formats d' GIF ou et les fichiers audio MOD.
MPEG-1MPEG-1 est une norme de compression vidéo et audio définie par la norme ISO/CEI-11172, élaborée par le groupe MPEG en 1988. Ce groupe a pour but de développer des standards internationaux de compression, décompression, traitement et codage d'images animées et de données audio. La norme MPEG-1 représente chaque image comme un ensemble de blocs 16 × 16. Elle permet d'obtenir une définition de : 352× à 30 images par seconde en NTSC 352× à 25 images par seconde en PAL/SECAM MPEG-1 permet d'obtenir des débits de l'ordre de 1,2 Mbit/s (exploitable sur un lecteur de CD-ROM).
Ondelette de HaarL'ondelette de Haar, ou fonction de Rademacher, est une ondelette créée par Alfréd Haar en 1909. On considère que c'est la première ondelette connue. Il s'agit d'une fonction constante par morceaux, ce qui en fait l'ondelette la plus simple à comprendre et à implémenter. L'ondelette de Haar peut être généralisée par ce qu'on appelle le système de Haar. La fonction-mère des ondelettes de Haar est une fonction constante par morceaux : La fonction d'échelle associée est alors une fonction porte : Le système de Haar est une suite de fonctions continues par morceaux, appartenant à pour .
Théorie de la complexité (informatique théorique)vignette|Quelques classes de complexité étudiées dans le domaine de la théorie de la complexité. Par exemple, P est la classe des problèmes décidés en temps polynomial par une machine de Turing déterministe. La théorie de la complexité est le domaine des mathématiques, et plus précisément de l'informatique théorique, qui étudie formellement le temps de calcul, l'espace mémoire (et plus marginalement la taille d'un circuit, le nombre de processeurs, l'énergie consommée ...) requis par un algorithme pour résoudre un problème algorithmique.