Théorème d'AlfvénEn magnétohydrodynamique, le théorème d'Alfvén établit que dans un fluide dont la conductivité électrique est infinie, les lignes de champ magnétique sont "gelées" à l'intérieur de ce fluide et qu'elles sont donc contraintes de se déplacer avec celui-ci. Le physicien Hannes Alfvén fit pour la première fois part de cette idée en 1942. Il est à noter que dans la plupart des milieux étudiés en astrophysique, aussi bien que dans les conditions d'étude des plasmas en laboratoire, du fait que la conductivité électrique n'est pas infinie, les lignes de champ magnétique ne sont pas idéalement piégées à l'intérieur des fluides.
Sputter depositionSputter deposition is a physical vapor deposition (PVD) method of thin film deposition by the phenomenon of sputtering. This involves ejecting material from a "target" that is a source onto a "substrate" such as a silicon wafer. Resputtering is re-emission of the deposited material during the deposition process by ion or atom bombardment. Sputtered atoms ejected from the target have a wide energy distribution, typically up to tens of eV (100,000 K).
4-polytopeEn géométrie, un 4-polytope (fréquemment appelé également un polychore) est un polytope de l'espace à quatre dimensions. C'est une figure connexe, composée d'un nombre fini de polytopes de dimension inférieure : des sommets, des arêtes, des faces (qui sont des polygones), et des cellules (qui sont des polyèdres), chaque face appartenant à exactement deux cellules. Le 4-polytope le plus connu est le tesseract (ou hypercube), analogue en 4D du cube. La définition des 4-polytopes varie beaucoup selon les auteurs.
Propagation ionosphériquevignette|Schéma de la propagation ionosphérique des ondes radio. On appelle propagation ionosphérique (ou liaison lointaine par réflexion ionosphérique) la propriété des ondes électromagnétiques de parcourir des distances plus grandes que la simple par réflexion sur l’ionosphère. Les conditions de la propagation ionosphérique dépendent de plusieurs facteurs tels le cycle solaire, l'heure et les saisons. Puisqu’elle n’est pas limitée par la courbure de la Terre, cette propagation peut être utilisée notamment pour communiquer au-delà de l’horizon, sur des distances intercontinentales.
PentachoreEn géométrie euclidienne de dimension quatre, le pentachore, ou 5-cellules, aussi appelé un pentatope ou 4-simplexe, est le polychore régulier convexe le plus simple. C'est la généralisation d'un triangle du plan ou d'un tétraèdre de l'espace. Le pentachore est constitué de 5 cellules, toutes des tétraèdres. C'est un polytope auto-dual. Sa figure de sommet est un tétraèdre. Son intersection maximale avec l'espace tridimensionnel est le prisme triangulaire. Le symbole de Schläfli du pentachore est {3,3,3}.
Overlap–add methodIn signal processing, the overlap–add method is an efficient way to evaluate the discrete convolution of a very long signal with a finite impulse response (FIR) filter : where h[m] = 0 for m outside the region [1, M]. This article uses common abstract notations, such as or in which it is understood that the functions should be thought of in their totality, rather than at specific instants (see Convolution#Notation). The concept is to divide the problem into multiple convolutions of h[n] with short segments of : where L is an arbitrary segment length.
Overlap–save methodIn signal processing, overlap–save is the traditional name for an efficient way to evaluate the discrete convolution between a very long signal and a finite impulse response (FIR) filter : where h[m] = 0 for m outside the region [1, M]. This article uses common abstract notations, such as or in which it is understood that the functions should be thought of in their totality, rather than at specific instants (see Convolution#Notation). The concept is to compute short segments of y[n] of an arbitrary length L, and concatenate the segments together.
Cyclic orderIn mathematics, a cyclic order is a way to arrange a set of objects in a circle. Unlike most structures in order theory, a cyclic order is not modeled as a binary relation, such as "a < b". One does not say that east is "more clockwise" than west. Instead, a cyclic order is defined as a ternary relation [a, b, c], meaning "after a, one reaches b before c". For example, [June, October, February], but not [June, February, October], cf. picture. A ternary relation is called a cyclic order if it is cyclic, asymmetric, transitive, and connected.