Concept

4-polytope

Résumé
En géométrie, un 4-polytope (fréquemment appelé également un polychore) est un polytope de l'espace à quatre dimensions. C'est une figure connexe, composée d'un nombre fini de polytopes de dimension inférieure : des sommets, des arêtes, des faces (qui sont des polygones), et des cellules (qui sont des polyèdres), chaque face appartenant à exactement deux cellules. Le 4-polytope le plus connu est le tesseract (ou hypercube), analogue en 4D du cube. La définition des 4-polytopes varie beaucoup selon les auteurs. Une définition simple des 4-polytopes convexes est d'être l'enveloppe convexe d'un ensemble fini de points de non tous situés dans le même hyperplan. Il est facile alors de définir les sommets, les arêtes, les faces et les cellules du polytope comme les polytopes de dimension inférieure inclus dans la frontière ; on en déduit une définition plus abstraire, et ne se limitant pas à la convexité, comme ensemble de polyèdres de ayant une structure combinatoire convenable (par exemple, chaque polygone appartient exactement à deux polyèdres) ; cette description a amené à la notion encore plus abstraite de complexe simplicial. Une véritable visualisation des 4-polytopes étant impossible dans l'espace usuel, plusieurs méthodes ont été imaginées pour les représenter. Projections orthogonale Les projections orthogonales sont particulièrement utiles pour mettre en évidence les symétries de certains 4-polytopes. Elles peuvent être dessinées dans le plan comme des graphes montrant les sommets et les arêtes, ou dans l'espace (en mettant les 2-faces en évidence). Projections en perspective Une des projections les plus utiles pour donner un sens de la profondeur dans la quatrième dimension est le diagramme de Schlegel, une projection stéréographique des sommets du polytope (supposés incrits dans une 3-sphère) vers l'espace usuel, et connectant ensuite ces sommets par des arêtes (qui ne sont pas nécessairement les projetés des arêtes réelles).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.