En géométrie, un 4-polytope (fréquemment appelé également un polychore) est un polytope de l'espace à quatre dimensions. C'est une figure connexe, composée d'un nombre fini de polytopes de dimension inférieure : des sommets, des arêtes, des faces (qui sont des polygones), et des cellules (qui sont des polyèdres), chaque face appartenant à exactement deux cellules. Le 4-polytope le plus connu est le tesseract (ou hypercube), analogue en 4D du cube.
La définition des 4-polytopes varie beaucoup selon les auteurs. Une définition simple des 4-polytopes convexes est d'être l'enveloppe convexe d'un ensemble fini de points de non tous situés dans le même hyperplan. Il est facile alors de définir les sommets, les arêtes, les faces et les cellules du polytope comme les polytopes de dimension inférieure inclus dans la frontière ; on en déduit une définition plus abstraire, et ne se limitant pas à la convexité, comme ensemble de polyèdres de ayant une structure combinatoire convenable (par exemple, chaque polygone appartient exactement à deux polyèdres) ; cette description a amené à la notion encore plus abstraite de complexe simplicial.
Une véritable visualisation des 4-polytopes étant impossible dans l'espace usuel, plusieurs méthodes ont été imaginées pour les représenter.
Projections orthogonale
Les projections orthogonales sont particulièrement utiles pour mettre en évidence les symétries de certains 4-polytopes. Elles peuvent être dessinées dans le plan comme des graphes montrant les sommets et les arêtes, ou dans l'espace (en mettant les 2-faces en évidence).
Projections en perspective
Une des projections les plus utiles pour donner un sens de la profondeur dans la quatrième dimension est le diagramme de Schlegel, une projection stéréographique des sommets du polytope (supposés incrits dans une 3-sphère) vers l'espace usuel, et connectant ensuite ces sommets par des arêtes (qui ne sont pas nécessairement les projetés des arêtes réelles).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
In mathematics, a regular 4-polytope is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions. There are six convex and ten star regular 4-polytopes, giving a total of sixteen. The convex regular 4-polytopes were first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century. He discovered that there are precisely six such figures.
En mathématiques, le symbole de Schläfli est une notation de la forme {p,q,r, ...} qui permet de définir les polyèdres réguliers et les pavages. Cette notation donne un résumé de certaines propriétés importantes d'un polytope régulier particulier. Le symbole de Schläfli fut nommé ainsi en l'honneur du mathématicien du Ludwig Schläfli qui fit d'importantes contributions en géométrie et dans d'autres domaines. Le symbole de Schläfli pour un polygone régulier convexe à n côtés est {n}.
En géométrie, le tesseract, aussi appelé 8-cellules ou octachore, est l'analogue du cube (tri-dimensionnel), où le mouvement le long de la quatrième dimension est souvent une représentation pour des transformations liées du cube à travers le temps. Le tesseract est au cube ce que le cube est au carré ; ou, plus formellement, le tesseract peut être décrit comme un 4-polytope régulier convexe dont les frontières sont constituées par huit cellules cubiques.
Explore l'explication géométrique des raisons pour lesquelles les solutions Lasso sont rares et comment les coefficients changent avec le paramètre de régularisation.
We present the design of a motion planning algorithm that ensures safety for an autonomous vehicle. In particular, we consider a multimodal distribution over uncertainties; for example, the uncertain predictions of future trajectories of surrounding vehicl ...
For the Bargmann-Fock field on R-d with d >= 3, we prove that the critical level l(c) (d) of the percolation model formed by the excursion sets {f >= l} is strictly positive. This implies that for every l sufficiently close to 0 (in particular for the noda ...
The field of computational topology has developed many powerful tools to describe the shape of data, offering an alternative point of view from classical statistics. This results in a variety of complex structures that are not always directly amenable for ...