Publication

A MLS-based lattice spring model for simulating elasticity of materials

Résumé

A MLS-based lattice spring model is presented for numerical modeling of elasticity of materials. In the model, shear springs between particles are introduced in addition to normal springs. However, the unknowns contain only particle displacements but no particle rotations. The novelty of the model lies in that the deformations of shear springs are computed by using the local strain obtained by the moving least squares (MLS) approximation rather than using the particle displacements directly. By doing so, the proposed lattice spring model can represent the diversity of Poisson's ratio without violating the requirement of rotational invariance. Relationships between micro spring parameters and macro material constants are derived from the Cauchy-born rules and the hyperelastic theory. Numerical examples show that the proposed model is able to reproduce elastic solutions obtained by finite element methods for problems without fractures. Therefore, it is capable of simulating solid materials which are initially continuous, but eventually fracture when critical stress and/or displacement levels are reached. A demonstrating example is presented.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (33)
Stress–strain curve
In engineering and materials science, a stress–strain curve for a material gives the relationship between stress and strain. It is obtained by gradually applying load to a test coupon and measuring the deformation, from which the stress and strain can be determined (see tensile testing). These curves reveal many of the properties of a material, such as the Young's modulus, the yield strength and the ultimate tensile strength. Generally speaking, curves representing the relationship between stress and strain in any form of deformation can be regarded as stress–strain curves.
Science des matériaux
La science des matériaux repose sur la relation entre les propriétés, la morphologie structurale et la mise en œuvre des matériaux qui constituent les objets qui nous entourent (métaux, polymères, semi-conducteurs, céramiques, composites, etc.). Elle se focalise sur l'étude des principales caractéristiques des matériaux, ainsi que leurs propriétés mécaniques, chimiques, électriques, thermiques, optiques et magnétiques. La science des matériaux est au cœur de beaucoup des grandes révolutions techniques.
Finite strain theory
In continuum mechanics, the finite strain theory—also called large strain theory, or large deformation theory—deals with deformations in which strains and/or rotations are large enough to invalidate assumptions inherent in infinitesimal strain theory. In this case, the undeformed and deformed configurations of the continuum are significantly different, requiring a clear distinction between them. This is commonly the case with elastomers, plastically-deforming materials and other fluids and biological soft tissue.
Afficher plus
Publications associées (34)

Modeling friction and wear using an adaptive discrete-continuum coupling

Manon Eugénie Voisin--Leprince

When two objects slide against each other, wear and friction occur at their interface. The accumulation of wear forms what is commonly referred to as a ``third-body''. Understanding third-body evolution has significant applications in industry, where contr ...
EPFL2024

Atomic-scale Characterization of Strain and Gate effects on Two-dimensional Materials by Scanning Tunneling Microscopy

Jz -Yuan Juo

Strain is an inevitable phenomenon in two-dimensional (2D) material, regardless of whether the film is suspended or supported. Moreover, strain is known to alter the physical and chemical properties, such as the band gap, charge carrier effective masses, d ...
EPFL2023

Bio-inspired Structures for Enhancing Energy Dissipation of Helmets

Mengbo Kang

The risk of concussion remains high in snow sports, even with a high helmet adoption rate. Novel helmet designs with enhanced energy dissipation are needed to solve this issue. In this study, helmet liners with bio-inspired honeycomb structures were propos ...
2022
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.