Quantification (logique)vignette|Symboles mathématiques des deux quantificateurs logiques les plus courants.|236px En mathématiques, les expressions « pour tout » (ou « quel que soit ») et « il existe », utilisées pour formuler des propositions mathématiques dans le calcul des prédicats, sont appelées des quantifications. Les symboles qui les représentent en langage formel sont appelés des quantificateurs (ou autrefois des quanteurs). La quantification universelle (« pour tout ... » ou « quel que soit ... ») se dénote par le symbole ∀ (un A à l'envers).
Second-order logicIn logic and mathematics, second-order logic is an extension of first-order logic, which itself is an extension of propositional logic. Second-order logic is in turn extended by higher-order logic and type theory. First-order logic quantifies only variables that range over individuals (elements of the domain of discourse); second-order logic, in addition, also quantifies over relations. For example, the second-order sentence says that for every formula P, and every individual x, either Px is true or not(Px) is true (this is the law of excluded middle).
Formule booléenne quantifiéeEn théorie de la complexité, en informatique théorique, en logique mathématique, une formule booléenne quantifiée (ou formule QBF pour quantified binary formula en anglais) est une formule de la logique propositionnelle où les variables propositionnelles sont quantifiées. Par exemple, est une formule booléenne quantifiée et se lit « pour toute valeur booléenne x, il existe une valeur booléenne y et une valeur booléenne z telles que ((x ou z) et y) ».
Fragment (logique)En logique mathématique, un fragment d'un langage ou d'une théorie logique est un sous-ensemble de ce langage obtenu en lui imposant des restrictions syntaxiques. Par conséquent, les formules bien formées d'un fragment sont un sous-ensemble de celles de la logique originale. Cependant, la sémantique des formules dans le fragment et dans la logique originale coïncide, et ainsi toute formule du fragment peut être exprimée dans la logique d'origine.
Démonstration automatique de théorèmesLa démonstration automatique de théorèmes (DAT) est l'activité d'un logiciel qui démontre une proposition qu'on lui soumet, sans l'aide de l'utilisateur. Les démonstrateurs automatiques de théorème ont résolu des conjectures intéressantes difficiles à établir, certaines ayant échappé aux mathématiciens pendant longtemps ; c'est le cas, par exemple, de la , démontrée en 1996 par le logiciel EQP.
Raisonnement automatisévignette|Visualisation commune du réseau de neurones artificiels avec puce NOTOC Le raisonnement automatisé est un domaine de l'informatique consacré à la compréhension des différents aspects du raisonnement de manière à permettre la création de logiciels qui permettraient aux ordinateurs de « raisonner » de manière automatique, ou presque. Il est considéré habituellement comme un sous-domaine de l'intelligence artificielle, mais possède aussi de fortes connexions avec l'Informatique théorique et même avec la philosophie.
Satisfiability modulo theoriesEn informatique et en logique mathématique, un problème de satisfiabilité modulo des théories (SMT) est un problème de décision pour des formules de logique du premier ordre avec égalité (sans quantificateurs), combinées à des théories dans lesquelles sont exprimées certains symboles de prédicat et/ou certaines fonctions. Des exemples de théories incluent la théorie des nombres réels, la théorie de l’arithmétique linéaire, des théories de diverses structures de données comme les listes, les tableaux ou les tableaux de bits, ainsi que des combinaisons de celles-ci.
Horn-satisfiabilitéUne formule de Horn est une conjonction de clauses contenant chacune au plus un littéral positif, c'est-à-dire une conjonction de clauses de Horn. Puisque le problème SAT est NP-complet, donc vérifiable en temps polynomial et plus difficile que tout problème dans NP, il est naturel de rechercher des problèmes proches mais plus "faciles" à résoudre. C'est notamment le cas de la satisfaisabilité d'une formule de Horn, puisqu'il s'agit d'un problème P-complet, plus difficile que tout problème dans P.
Logique intuitionnisteLa logique intuitionniste est une logique qui diffère de la logique classique par le fait que la notion de vérité est remplacée par la notion de preuve constructive. Une proposition telle que « la constante d'Euler-Mascheroni est rationnelle ou la constante d'Euler-Mascheroni n'est pas rationnelle » n'est pas démontrée de manière constructive (intuitionniste) dans le cadre de nos connaissances mathématiques actuelles, car la tautologie classique « P ou non P » (tiers exclu) n'appartient pas à la logique intuitionniste.
Problème du sac à dosEn algorithmique, le problème du sac à dos, parfois noté (KP) (de l'anglais Knapsack Problem) est un problème d'optimisation combinatoire. Ce problème classique en informatique et en mathématiques modélise une situation analogue au remplissage d'un sac à dos. Il consiste à trouver la combinaison d'éléments la plus précieuse à inclure dans un sac à dos, étant donné un ensemble d'éléments décrits par leurs poids et valeurs.