Membrane hémi-perméableSemipermeable membrane is a type of biological or synthetic, polymeric membrane that will allow certain molecules or ions to pass through it by osmosis. The rate of passage depends on the pressure, concentration, and temperature of the molecules or solutes on either side, as well as the permeability of the membrane to each solute. Depending on the membrane and the solute, permeability may depend on solute size, solubility, properties, or chemistry. How the membrane is constructed to be selective in its permeability will determine the rate and the permeability.
Arbre de défaillancesthumb|Exemple d'arbre de défaillances. Un arbre de défaillances ou ADD (aussi appelé arbre de pannes ou arbre de fautes) est une technique d’ingénierie très utilisée dans les études de sécurité et de fiabilité des systèmes statiques (un système statique est un système dont la défaillance ne dépend pas de l'ordre de défaillance de ses composants), ainsi que dans l'analyse de cause racine (ACR). Cette méthode consiste à représenter graphiquement les combinaisons possibles d’événements qui permettent la réalisation d’un événement indésirable prédéfini.
Laserthumb|250px|Lasers rouges (660 & ), verts (532 & ) et bleus (445 & ). thumb|250px|Rayon laser à travers un dispositif optique. thumb|250px|Démonstration de laser hélium-néon au laboratoire Kastler-Brossel à l'Université Pierre-et-Marie-Curie. Un laser (acronyme issu de l'anglais light amplification by stimulated emission of radiation qui signifie « amplification de la lumière par émission stimulée de radiation ») est un système photonique.
Fiber laserA fiber laser (or fibre laser in Commonwealth English) is a laser in which the active gain medium is an optical fiber doped with rare-earth elements such as erbium, ytterbium, neodymium, dysprosium, praseodymium, thulium and holmium. They are related to doped fiber amplifiers, which provide light amplification without lasing. Fiber nonlinearities, such as stimulated Raman scattering or four-wave mixing can also provide gain and thus serve as gain media for a fiber laser.
Inversion de populationvignette|Association Warungi. En physique, notamment en physique statistique, une inversion de population se produit lorsqu'un système (à trois niveaux d'énergie minimum) comme un groupe d'atomes ou molécules, se trouve dans un état dans lequel la majorité des éléments sont dans un état excité plutôt que dans leur état fondamental, i.e. : > . Le phénomène d’inversion de population est une étape nécessaire dans le fonctionnement d'un laser. Avoir une population plus élevée dans le niveau de plus haute énergie que dans le niveau n'est pas une situation d'équilibre.
Laser hélium-néonthumb|right|Laser hélium-néon en démonstration au Laboratoire Kastler Brossel. Un laser hélium-néon est un laser à de petite dimension. Il a de nombreuses applications scientifiques et industrielles, on l'utilise aussi au laboratoire pour les démonstrations d'optique. Il émet dans le rouge à (nanomètres). Le milieu amplificateur est un mélange de gaz néon et hélium, dans une proportion variant de 1/5 à 1/20, enfermé à basse pression (en moyenne par centimètre de longueur de la cavité) dans une ampoule de verre.
Stress–strain analysisStress–strain analysis (or stress analysis) is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics, stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other, while strain is the measure of the deformation of the material. In simple terms we can define stress as the force of resistance per unit area, offered by a body against deformation.
TempératureLa température est une grandeur physique mesurée à l’aide d’un thermomètre et étudiée en thermométrie. Dans la vie courante, elle est reliée aux sensations de froid et de chaud, provenant du transfert thermique entre le corps humain et son environnement. En physique, elle se définit de plusieurs manières : comme fonction croissante du degré d’agitation thermique des particules (en théorie cinétique des gaz), par l’équilibre des transferts thermiques entre plusieurs systèmes ou à partir de l’entropie (en thermodynamique et en physique statistique).
Stress–strain curveIn engineering and materials science, a stress–strain curve for a material gives the relationship between stress and strain. It is obtained by gradually applying load to a test coupon and measuring the deformation, from which the stress and strain can be determined (see tensile testing). These curves reveal many of the properties of a material, such as the Young's modulus, the yield strength and the ultimate tensile strength. Generally speaking, curves representing the relationship between stress and strain in any form of deformation can be regarded as stress–strain curves.
Supraconducteur à haute températureUn supraconducteur à haute température (en anglais, high-temperature superconductor : high- ou HTSC) est un matériau présentant une température critique de supraconductivité relativement élevée par rapport aux supraconducteurs conventionnels, c'est-à-dire en général à des températures supérieures à soit . Ce terme désigne en général la famille des matériaux de type cuprate, dont la supraconductivité existe jusqu'à . Mais d'autres familles de supraconducteurs, comme les supraconducteurs à base de fer découverts en 2008, peuvent aussi être désignées par ce même terme.