Nombre de PrandtlLe nombre de Prandtl (Pr) est un nombre sans dimension, ainsi nommé en hommage au physicien allemand Ludwig Prandtl. C'est le rapport entre la de la quantité de mouvement (viscosité cinématique) et celle de la (diffusivité thermique) : avec : la viscosité cinématique (), la diffusivité thermique (), la viscosité dynamique (exprimée en ), la masse volumique (en ), la conductivité thermique, (en ), la capacité thermique massique à pression constante (en ).
Équations de Navier-Stokesthumb|Léonard de Vinci : écoulement dans une fontaine En mécanique des fluides, les équations de Navier-Stokes sont des équations aux dérivées partielles non linéaires qui décrivent le mouvement des fluides newtoniens (donc des gaz et de la majeure partie des liquides). La résolution de ces équations modélisant un fluide comme un milieu continu à une seule phase est difficile, et l'existence mathématique de solutions des équations de Navier-Stokes n'est pas démontrée.
Nombre de GrashofLe nombre de Grashof (Gr) est un nombre sans dimension utilisé en mécanique des fluides pour caractériser la convection libre dans un fluide. Il correspond au rapport des forces de gravité sur les forces visqueuses. Il permet de caractériser le transfert thermique par convection dû au déplacement naturel d'un fluide, par l'intermédiaire du calcul du nombre de Nusselt. Ce nombre porte le nom de Franz Grashof, ingénieur allemand.
Couche limitevignette|redresse=2|Couches limites laminaires et turbulentes d'un écoulement sur une plaque plane (avec profil des vitesses moyennes). La couche limite est la zone d'interface entre un corps et le fluide environnant lors d'un mouvement relatif entre les deux. Elle est la conséquence de la viscosité du fluide et est un élément important en mécanique des fluides (aérodynamique, hydrodynamique), en météorologie, en océanographie vignette|Profil de vitesses dans une couche limite.
Coefficient de transfert thermiqueLe coefficient de transfert thermique ou coefficient de transmission thermique est un coefficient quantifiant le flux d'énergie traversant un milieu, par unité de surface, de volume ou de longueur. L'inverse du coefficient de transfert thermique est la résistance thermique. C'est un terme important dans l'équation d'un transfert thermique et permet d'indiquer la facilité avec laquelle l'énergie thermique passe un obstacle ou un milieu. Dans le cas d'un transfert surfacique, il est appelé coefficient de transfert thermique surfacique ou résistance thermique d'interface.
Forced convectionForced convection is a mechanism, or type of transport, in which fluid motion is generated by an external source (like a pump, fan, suction device, etc.). Alongside natural convection, thermal radiation, and thermal conduction it is one of the methods of heat transfer and allows significant amounts of heat energy to be transported very efficiently. This mechanism is found very commonly in everyday life, including central heating, air conditioning, steam turbines, and in many other machines.
Nombre de RayleighLe nombre de Rayleigh () est un nombre sans dimension utilisé en mécanique des fluides et caractérisant le transfert de chaleur au sein d'un fluide : inférieur à une valeur critique de l'ordre de , le transfert s'opère uniquement par conduction, tandis qu'au-delà de cette valeur la convection libre ou naturelle devient prépondérante. Ce nombre porte le nom de Lord Rayleigh, physicien anglais.
Condition aux limites de RobinEn mathématique, une condition aux limites de Robin (ou de troisième type) est un type de condition aux limites portant le nom du mathématicien français Victor Gustave Robin (1855-1897), qui a travaillé dans le domaine de la thermodynamique. Elle est également appelée condition aux limites de Fourier. Imposée à une équation différentielle ordinaire ou à une équation aux dérivées partielles, il s'agit d'une relation linéaire entre les valeurs de la fonction et les valeurs de la dérivée de la fonction sur le bord du domaine.
Condition aux limites de DirichletEn mathématiques, une condition aux limites de Dirichlet (nommée d’après Johann Dirichlet) est imposée à une équation différentielle ou à une équation aux dérivées partielles lorsque l'on spécifie les valeurs que la solution doit vérifier sur les frontières/limites du domaine. Pour une équation différentielle, par exemple : la condition aux limites de Dirichlet sur l'intervalle s'exprime par : où et sont deux nombres donnés.
Problème aux limitesEn analyse, un problème aux limites est constitué d'une équation différentielle (ou plus généralement aux dérivées partielles) dont on recherche une solution prenant de plus des valeurs imposées en des limites du domaine de résolution. Contrairement au problème analogue dit de Cauchy, où une ou plusieurs conditions en un même endroit sont imposées (typiquement la valeur de la solution et de ses dérivées successives en un point), auquel le théorème de Cauchy-Lipschitz apporte une réponse générale, les problèmes aux limites sont souvent des problèmes difficiles, et dont la résolution peut à chaque fois conduire à des considérations différentes.