Méthode des plans sécantsvignette|Application de la méthode des plans sécants au problème du voyageur de commerce. En mathématiques, et spécialement en optimisation linéaire en nombres entiers, la méthode des plans sécants, ou cutting plane method, est une méthode utilisée pour trouver une solution entière d'un problème d'optimisation linéaire. Elle fut introduite par Ralph E. Gomory puis étudiée par Gomory et Václav Chvátal. Le principe de la méthode est d'ajouter des contraintes au programme linéaire pour le raffiner, et le rapprocher des solutions intégrales.
Aide à la décision multicritèreL'aide à la décision multicritère constitue une branche d'étude majeure de la recherche opérationnelle impliquant plusieurs écoles de pensée, principalement américaine avec les travaux de Thomas L. Saaty et européenne avec ceux de Bernard Roy et du LAMSADE (Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision). Il s'agit de méthodes et de calculs permettant de choisir la meilleure solution ou la solution optimale parmi tout un ensemble de solutions, l'alternative de type OUI-NON n'étant qu'un cas particulier du cas général.
Idéal (théorie des ordres)En mathématiques, un idéal au sens de la théorie des ordres est un sous-ensemble particulier d'un ensemble ordonné. Bien qu'à l'origine ce terme soit issu de la notion algébrique d'idéal d'un anneau, il a été généralisé en une notion distincte. Les idéaux interviennent dans beaucoup de constructions en théorie des ordres, en particulier des treillis. Un idéal d'un ensemble ordonné (E, ≤) est une partie non vide I de E telle que : I est une section commençante, c'est-à-dire que tout minorant d'un élément de I appartient à I ; I est un ensemble ordonné filtrant, c'est-à-dire que deux éléments quelconques de I possèdent toujours un majorant commun dans I.
Prise de décisionvignette|Lorsqu'il s'agit de prendre une décision, il est bon de savoir que des situations différentes nécessitent une approche différente. Il n'y a pas de façon unique de penser/d'agir. la plupart du temps, nous errons dans l'espace du désordre, sans savoir ce qui se passe, sans savoir comment agir. Dans ce cas, nous avons tendance à entrer dans l'espace avec lequel nous nous sentons le plus à l'aise et à commencer à agir. Lorsque vous avez trouvé le Saint Graal, la solution unique pour chaque problème, vous feriez mieux de faire attention.
Postulats de la mécanique quantiquevignette|Participants au Congrès Solvay de 1927 sur la mécanique quantique Cet article traite des postulats de la mécanique quantique. La description du monde microscopique que fournit la mécanique quantique s'appuie sur une vision radicalement nouvelle, et s'oppose en cela à la mécanique classique. Elle repose sur des postulats. S'il existe un très large consensus entre les physiciens sur la manière de réaliser les calculs qui permettent de rendre compte des phénomènes quantiques et de prévoir leur évolution, il n'existe pas en revanche de consensus sur une manière unique de les expliquer aux étudiants.
Neural networkA neural network can refer to a neural circuit of biological neurons (sometimes also called a biological neural network), a network of artificial neurons or nodes in the case of an artificial neural network. Artificial neural networks are used for solving artificial intelligence (AI) problems; they model connections of biological neurons as weights between nodes. A positive weight reflects an excitatory connection, while negative values mean inhibitory connections. All inputs are modified by a weight and summed.
Test exact de FisherEn statistique, le test exact de Fisher est un test statistique exact utilisé pour l'analyse des tables de contingence. Ce test est utilisé en général avec de faibles effectifs mais il est valide pour toutes les tailles d'échantillons. Il doit son nom à son inventeur, Ronald Fisher. C'est un test qualifié d'exact car les probabilités peuvent être calculées exactement plutôt qu'en s'appuyant sur une approximation qui ne devient correcte qu'asymptotiquement comme pour le test du utilisé dans les tables de contingence.
Variable cachéeEn physique quantique, le terme de variable cachée désigne des paramètres physiques hypothétiques qui ne seraient pas pris en compte par les postulats de la mécanique quantique, soit dans la définition de l'état quantique, ou dans l'évolution dynamique de l'état quantique. Ces variables cachées sont introduites, par certains physiciens, pour tenter d'apporter une solution notamment au problème de la mesure quantique car elles permettent d'établir une continuité de la mécanique quantique vers la mécanique classique.
Ordinal priority approachOrdinal priority approach (OPA) is a multiple-criteria decision analysis method that aids in solving the group decision-making problems based on preference relations. Various methods have been proposed to solve multi-criteria decision-making problems. The basis of most methods such as analytic hierarchy process and analytic network process is pairwise comparison matrix. The advantages and disadvantages of the pairwise comparison matrix were discussed by Munier and Hontoria in their book.
Optimisation SDPEn mathématiques et en informatique théorique, l'optimisation SDP ou semi-définie positive, est un type d'optimisation convexe, qui étend l'optimisation linéaire. Dans un problème d'optimisation SDP, l'inconnue est une matrice symétrique que l'on impose d'être semi-définie positive. Comme en optimisation linéaire, le critère à minimiser est linéaire et l'inconnue doit également satisfaire une contrainte affine. L'optimisation SDP se généralise par l'optimisation conique, qui s'intéresse aux problèmes de minimisation d'une fonction linéaire sur l'intersection d'un cône et d'un sous-espace affine.