Concept

Idéal (théorie des ordres)

Résumé
En mathématiques, un idéal au sens de la théorie des ordres est un sous-ensemble particulier d'un ensemble ordonné. Bien qu'à l'origine ce terme soit issu de la notion algébrique d'idéal d'un anneau, il a été généralisé en une notion distincte. Les idéaux interviennent dans beaucoup de constructions en théorie des ordres, en particulier des treillis. Définitions
Un idéal d'un ensemble ordonné (E, ≤) est une partie non vide I de E telle que :
  • I est une section commençante, c'est-à-dire que tout minorant d'un élément de I appartient à I ;
  • I est un ensemble ordonné filtrant, c'est-à-dire que deux éléments quelconques de I possèdent toujours un majorant commun dans I.
Cette définition étend aux ordres quelconques la définition originelle d'idéal d'un treillis : Si l'ordre (E, ≤) est un treillis — c'est-à-dire si toute paire {a, b} dans E possède une borne supérieure a⋁b et une borne inférieure a⋀b — une section commençante I est un idéal si et seulement si elle est stab
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement