Résumé
En statistique, le test exact de Fisher est un test statistique exact utilisé pour l'analyse des tables de contingence. Ce test est utilisé en général avec de faibles effectifs mais il est valide pour toutes les tailles d'échantillons. Il doit son nom à son inventeur, Ronald Fisher. C'est un test qualifié d'exact car les probabilités peuvent être calculées exactement plutôt qu'en s'appuyant sur une approximation qui ne devient correcte qu'asymptotiquement comme pour le test du utilisé dans les tables de contingence. Les calculs à la main ne sont raisonnables que pour les tables 2 × 2 mais le principe du test peut s'étendre au cas général et certains logiciels de statistique permettent le calcul pour le cas général. Fisher aurait conçu le test à la suite d'un commentaire de Muriel Bristol, qui prétendait pouvoir détecter si le thé ou le lait avait été ajouté en premier à sa tasse. Il a testé sa revendication dans une expérience appelée « lady tasting tea ». Soit un tableau de contingence entre deux variables qualitatives A et B. La première étape consiste à formuler l'hypothèse nulle d'indépendance entre ces deux variables qualitatives. Si ces deux variables sont indépendantes, on peut alors calculer la probabilité de chaque modalité A1, A2... La probabilité de présenter A1 et B1 est alors égale à P(A1) × P(B1). On peut ainsi calculer la probabilité de se trouver dans chaque case du tableau. Enfin, on peut calculer la probabilité, si l'hypothèse nulle est vraie, d'observer un tableau de contingence donné. La deuxième étape consiste alors à calculer, pour tous les tableaux de contingence possibles dont celui étudié, la possibilité d'observer ce tableau de contingence si l'hypothèse nulle est vraie. On range alors les tableaux de contingence en deux catégories : ceux qui sont plus compatibles avec l'hypothèse nulle que le tableau étudié (leur probabilité est plus élevée sous l'hypothèse nulle), et ceux qui sont autant ou moins compatibles. La p-value est obtenue en sommant les probabilités associées à chaque tableau de contingence au moins aussi improbable que le tableau étudié.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (9)
BIO-449: Understanding statistics and experimental design
This course is neither an introduction to the mathematics of statistics nor an introduction to a statistics program such as R. The aim of the course is to understand statistics from its experimental d
MATH-234(d): Probability and statistics
Ce cours enseigne les notions élémentaires de la théorie de probabilité et de la statistique, tels que l'inférence, les tests et la régression.
MATH-234(b): Probability and statistics
Ce cours enseigne les notions élémentaires de la théorie de probabilité et de la statistique, tels que l'inférence, les tests et la régression.
Afficher plus
Publications associées (42)