Analyse sémantique latenteL’analyse sémantique latente (LSA, de l'anglais : Latent semantic analysis) ou indexation sémantique latente (ou LSI, de l'anglais : Latent semantic indexation) est un procédé de traitement des langues naturelles, dans le cadre de la sémantique vectorielle. La LSA fut brevetée en 1988 et publiée en 1990. Elle permet d'établir des relations entre un ensemble de documents et les termes qu'ils contiennent, en construisant des « concepts » liés aux documents et aux termes.
Analyse sémantique latente probabilisteL’analyse sémantique latente probabiliste (de l'anglais, Probabilistic latent semantic analysis : PLSA), aussi appelée indexation sémantique latente probabiliste (PLSI), est une méthode de traitement automatique des langues inspirée de l'analyse sémantique latente. Elle améliore cette dernière en incluant un modèle statistique particulier. La PLSA possède des applications dans le filtrage et la recherche d'information, le traitement des langues naturelles, l'apprentissage automatique et les domaines associés.
Recherche d'informationLa recherche d'information (RI) est le domaine qui étudie la manière de retrouver des informations dans un corpus. Celui-ci est composé de documents d'une ou plusieurs bases de données, qui sont décrits par un contenu ou les métadonnées associées. Les bases de données peuvent être relationnelles ou non structurées, telles celles mises en réseau par des liens hypertexte comme dans le World Wide Web, l'internet et les intranets. Le contenu des documents peut être du texte, des sons, des images ou des données.
Allocation de Dirichlet latenteDans le domaine du traitement automatique des langues, l’allocation de Dirichlet latente (de l’anglais Latent Dirichlet Allocation) ou LDA est un modèle génératif probabiliste permettant d’expliquer des ensembles d’observations, par le moyen de groupes non observés, eux-mêmes définis par des similarités de données. Par exemple, si les observations () sont les mots collectés dans un ensemble de documents textuels (), le modèle LDA suppose que chaque document () est un mélange () d’un petit nombre de sujets ou thèmes ( topics), et que la génération de chaque occurrence d’un mot () est attribuable (probabilité) à l’un des thèmes () du document.
Plongement lexicalLe plongement lexical (« word embedding » en anglais) est une méthode d'apprentissage d'une représentation de mots utilisée notamment en traitement automatique des langues. Le terme devrait plutôt être rendu par vectorisation de mots pour correspondre plus proprement à cette méthode. Cette technique permet de représenter chaque mot d'un dictionnaire par un vecteur de nombres réels. Cette nouvelle représentation a ceci de particulier que les mots apparaissant dans des contextes similaires possèdent des vecteurs correspondants qui sont relativement proches.
Topic modelvignette|Visualisation du résumé d'un article scientifique traité par topic model. L'intensité de la couleur varie selon la probabilité d'appartenir au topic en question. En apprentissage automatique et en traitement automatique du langage naturel, un topic model (modèle thématique ou « modèle de sujet ») est un modèle probabiliste permettant de déterminer des sujets ou thèmes abstraits dans un document. Analyse sémantique latente (LSA) Allocation de Dirichlet latente (LDA) Analyse sémantique latente probab
Similarité sémantiqueLa similarité sémantique est une notion définie entre deux concepts soit au sein d'une même hiérarchie conceptuelle, soit - dans le cas d'alignement d'ontologies - entre deux concepts appartenant respectivement à deux hiérarchies conceptuelles distinctes. La similarité sémantique indique que ces deux concepts possèdent un grand nombre d'éléments en commun (propriétés, termes, instances). D’un point de vue psychologie cognitive, les notions de proximité et de similarité sont bien distinctes.
Traitement automatique du langage naturelLe traitement automatique du langage naturel (TALN), en anglais natural language processing ou NLP, est un domaine multidisciplinaire impliquant la linguistique, l'informatique et l'intelligence artificielle, qui vise à créer des outils de traitement du langage naturel pour diverses applications. Il ne doit pas être confondu avec la linguistique informatique, qui vise à comprendre les langues au moyen d'outils informatiques.
Similarité cosinusLa similarité cosinus donne la similarité de deux vecteurs à n dimensions en déterminant le cosinus de leur angle. Ce score est fréquemment utilisée en fouille de textes. Soit deux vecteurs A et B, le cosinus de leur angle θ s'obtient en prenant leur produit scalaire divisé par le produit de leurs normes : La valeur d'un cosinus, donc celle calculée ici pour cos θ, est comprise dans l'intervalle [-1,1]. La valeur de -1 indique des vecteurs opposés, la valeur de 0 des vecteurs indépendants (orthogonaux) et la valeur de 1 des vecteurs colinéaires de coefficient positif.
Spring (framework)En informatique, Spring est un framework open source pour construire et définir l'infrastructure d'une application Java, dont il facilite le développement et les tests. En 2004, Rod Johnson a écrit le livre Expert One-on-One J2EE Design and Development qui explique les raisons de la création de Spring. Spring est considéré comme un conteneur dit « léger ». La raison de ce nommage est expliquée par Erik Gollot dans l’introduction du document Introduction au framework Spring.