Spacetime symmetriesSpacetime symmetries are features of spacetime that can be described as exhibiting some form of symmetry. The role of symmetry in physics is important in simplifying solutions to many problems. Spacetime symmetries are used in the study of exact solutions of Einstein's field equations of general relativity. Spacetime symmetries are distinguished from internal symmetries. Physical problems are often investigated and solved by noticing features which have some form of symmetry.
Métrique (physique)En relativité restreinte et en relativité générale, une métrique est un invariant relativiste infinitésimal ayant la dimension d'une longueur. Mathématiquement, il s'agit d'un tenseur métrique relatif à la variété différentielle représentant l'espace-temps physique. En relativité générale, une métrique dans un référentiel contient toutes les informations sur la gravitation telle qu'elle y est perçue. Une métrique d'espace-temps s'exprime sous la forme d'une somme algébrique de carrés de formes différentielles linéaires.
Modèle de l'hyperboloïdeEn géométrie, le modèle de l'hyperboloïde, également dénommé modèle de Minkowski ou modèle de Lorentz (d'après les noms de Hermann Minkowski et Hendrik Lorentz), est un modèle de géométrie hyperbolique dans un espace de Minkowski de dimension n. Ce modèle d'espace hyperbolique est étroitement lié au modèle de Klein ou au disque de Poincaré. Espace de Minkowski Si x = (x0, x1, ...
Metric signatureIn mathematics, the signature (v, p, r) of a metric tensor g (or equivalently, a real quadratic form thought of as a real symmetric bilinear form on a finite-dimensional vector space) is the number (counted with multiplicity) of positive, negative and zero eigenvalues of the real symmetric matrix gab of the metric tensor with respect to a basis. In relativistic physics, the v represents the time or virtual dimension, and the p for the space and physical dimension.
Sphère de RiemannEn mathématiques, la sphère de Riemann est une manière de prolonger le plan des nombres complexes avec un point additionnel à l'infini, de manière que certaines expressions mathématiques deviennent convergentes et élégantes, du moins dans certains contextes. Déjà envisagée par le mathématicien Carl Friedrich Gauss, elle est baptisée du nom de son élève Bernhard Riemann. Ce plan s'appelle également la droite projective complexe, dénoté .
Analyse complexeL'analyse complexe est un domaine des mathématiques traitant des fonctions à valeurs complexes (ou, plus généralement, à valeurs dans un C-espace vectoriel) et qui sont dérivables par rapport à une ou plusieurs variables complexes. Les fonctions dérivables sur un ouvert du plan complexe sont appelées holomorphes et satisfont de nombreuses propriétés plus fortes que celles vérifiées par les fonctions dérivables en analyse réelle. Entre autres, toute fonction holomorphe est analytique et vérifie le principe du maximum.