Fluid solutionIn general relativity, a fluid solution is an exact solution of the Einstein field equation in which the gravitational field is produced entirely by the mass, momentum, and stress density of a fluid. In astrophysics, fluid solutions are often employed as stellar models. (It might help to think of a perfect gas as a special case of a perfect fluid.) In cosmology, fluid solutions are often used as cosmological models.
Exact solutions in general relativityIn general relativity, an exact solution is a solution of the Einstein field equations whose derivation does not invoke simplifying assumptions, though the starting point for that derivation may be an idealized case like a perfectly spherical shape of matter. Mathematically, finding an exact solution means finding a Lorentzian manifold equipped with tensor fields modeling states of ordinary matter, such as a fluid, or classical non-gravitational fields such as the electromagnetic field.
Vacuum solution (general relativity)In general relativity, a vacuum solution is a Lorentzian manifold whose Einstein tensor vanishes identically. According to the Einstein field equation, this means that the stress–energy tensor also vanishes identically, so that no matter or non-gravitational fields are present. These are distinct from the electrovacuum solutions, which take into account the electromagnetic field in addition to the gravitational field.
Electrovacuum solutionIn general relativity, an electrovacuum solution (electrovacuum) is an exact solution of the Einstein field equation in which the only nongravitational mass–energy present is the field energy of an electromagnetic field, which must satisfy the (curved-spacetime) source-free Maxwell equations appropriate to the given geometry. For this reason, electrovacuums are sometimes called (source-free) Einstein–Maxwell solutions.
Kerr metricThe Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon. The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find. The Kerr metric is a generalization to a rotating body of the Schwarzschild metric, discovered by Karl Schwarzschild in 1915, which described the geometry of spacetime around an uncharged, spherically symmetric, and non-rotating body.
Relation humainevignette|Relation humaine. Une relation humaine implique au moins deux êtres humains et est souvent décrite via des aspects différents, si l'on s'intéresse à la nature de la relation ou si l'on s'intéresse aux personnes en relation. Plusieurs disciplines universitaires travaillent à l'analyser. Certaines étudient régulièrement les questions que pose la société contemporaine : la psychologie, les sciences de la communication, la sociologie ; d'autres se placent dans la perspective de l'anthropologie, de la sémiotique ou allient les deux comme l'anthroposémiotique.
Intimate relationshipAn intimate relationship is an interpersonal relationship that involves physical or emotional intimacy. Although an intimate relationship is commonly a sexual relationship, it may also be a non-sexual relationship involving family or friends. Emotional intimacy is an essential aspect of a healthy . Feelings of liking or loving may prompt physical intimacy. However, emotional intimacy may or may not be present alongside physical intimacy depending on the relationship.
Formule de Boltzmannthumb|Sur la tombe de Ludwig Boltzmann En physique statistique, la formule de Boltzmann (1877) définit l'entropie microcanonique d'un système physique à l'équilibre macroscopique, libre d'évoluer à l'échelle microscopique entre micro-états différents. Elle s'écrit : où est la constante de Boltzmann qui est égale à . est appelé le nombre de complexions du système ou nombre de configurations.
Zone vadoseLa zone vadose ou zone non saturée (ZNS) du sol est la partie du sol ou du sous-sol située à l'interface entre atmosphère-pédosphère et la nappe phréatique. Dans cette zone, les pores du sol sont partiellement remplis d'eau (à l'exception de la frange capillaire) et de gaz (le plus souvent de l'air), contrairement à la zone saturée en eau (ou aquifères), dans laquelle la totalité du système poreux est rempli d'eau. La taille de cette zone dépend très fortement des caractéristiques climatiques, du type de sol et de l'hydrogéologie.
Théorème HLe théorème H est un théorème démontré par Boltzmann en 1872 dans le cadre de la théorie cinétique des gaz. Il décrit l'évolution vers l'équilibre thermodynamique d'un gaz satisfaisant à l'équation de Boltzmann et subissant des interactions élastiques. Selon ce théorème, il existe une certaine grandeur qui varie de façon monotone au cours du temps, pendant que le gaz relaxe vers l'état d'équilibre caractérisé par la loi de Maxwell pour les vitesses des particules du milieu. Cette quantité varie à l'opposé de l'entropie thermodynamique.