Problème des lecteurs et des rédacteursLe problème des lecteurs et des rédacteurs est un problème classique en théorie informatique, qui permet de modéliser les accès à des bases de données. Il fut énoncé sous cette forme par Edsger Dijkstra, qui est également à l'origine du problème du dîner des philosophes (problème relatif en particulier à l'ordonnancement des processus). Supposons qu'une base de données ait des lecteurs et des rédacteurs, et qu'il faille programmer les lecteurs et les rédacteurs de cette base de données.
Non-blocking algorithmIn computer science, an algorithm is called non-blocking if failure or suspension of any thread cannot cause failure or suspension of another thread; for some operations, these algorithms provide a useful alternative to traditional blocking implementations. A non-blocking algorithm is lock-free if there is guaranteed system-wide progress, and wait-free if there is also guaranteed per-thread progress. "Non-blocking" was used as a synonym for "lock-free" in the literature until the introduction of obstruction-freedom in 2003.
Chaîne de Markovvignette|Exemple élémentaire de chaîne de Markov, à deux états A et E. Les flèches indiquent les probabilités de transition d'un état à un autre. En mathématiques, une chaîne de Markov est un processus de Markov à temps discret, ou à temps continu et à espace d'états discret. Un processus de Markov est un processus stochastique possédant la propriété de Markov : l'information utile pour la prédiction du futur est entièrement contenue dans l'état présent du processus et n'est pas dépendante des états antérieurs (le système n'a pas de « mémoire »).
Earliest deadline first schedulingEarliest deadline first scheduling (« échéance proche = préparation en premier » en anglais) est un algorithme d'ordonnancement préemptif, à priorité dynamique, utilisé dans les systèmes temps réel. Il attribue une priorité à chaque requête en fonction de l'échéance de cette dernière, les tâches dont l’échéance est proche recevant la priorité la plus élevée. Cet algorithme est optimal pour tous types de système de tâches. Cependant, il est assez difficile à mettre en œuvre et est de ce fait peu utilisé.
Méta-analyseUne méta-analyse est une méthode scientifique systématique combinant les résultats d'une série d'études indépendantes sur un problème donné, selon un protocole reproductible. Plus spécifiquement, il s'agit d'une synthèse statistique des études incluses dans une revue systématique. La méta-analyse permet une analyse plus précise des données par l'augmentation du nombre de cas étudiés et de tirer une conclusion globale. La méta-analyse fait partie des méthodes d'analyse dites secondaires en ce sens qu'elles s'appuient sur la ré-exploitation de données existantes.
Propriété de Markovvignette|Exemple de processus stochastique vérifiant la propriété de Markov: un mouvement Brownien (ici représenté en 3D) d'une particule dont la position à un instant t+1 ne dépend que de la position précédente à l'instant t. En probabilité, un processus stochastique vérifie la propriété de Markov si et seulement si la distribution conditionnelle de probabilité des états futurs, étant donnés les états passés et l'état présent, ne dépend en fait que de l'état présent et non pas des états passés (absence de « mémoire »).