Limite de BekensteinEn physique, la limite de Bekenstein est une limite supérieure à l'entropie S, ou l'information I qui peut être contenue dans une région finie donnée de l'espace qui contient une quantité finie d'énergie ou, réciproquement, la quantité maximum d'information requise pour décrire parfaitement un système physique donné jusqu'au niveau quantique. Elle implique que l'information d'un système physique, ou l'information nécessaire pour décrire parfaitement ce système, doit être finie si cette région de l'espace et son énergie sont finies.
Moment magnétique du neutronLe moment magnétique du neutron est la grandeur magnétique caractéristique du neutron. Le neutron étant une particule réputée électriquement neutre, l'existence d'un moment magnétique revêt une importance particulière puisque les moments magnétiques sont souvent associés à l'existence d'une charge électrique. L'existence d'un tel moment magnétique témoigne que la neutralité n'est pas absolue et est parfois considéré comme une preuve indirecte de l'existence d'une sous-structure pour le neutron, constitué de particules chargées, les quarks.
Résonance magnétique nucléairevignette|175px|Spectromètre de résonance magnétique nucléaire. L'aimant de 21,2 T permet à l'hydrogène (H) de résonner à . La résonance magnétique nucléaire (RMN) est une propriété de certains noyaux atomiques possédant un spin nucléaire (par exemple H, C, O, F, P, Xe...), placés dans un champ magnétique. Lorsqu'ils sont soumis à un rayonnement électromagnétique (radiofréquence), le plus souvent appliqué sous forme d'impulsions, les noyaux atomiques peuvent absorber l'énergie du rayonnement puis la relâcher lors de la relaxation.
Sustentation électromagnétiqueLa sustentation électromagnétique est une méthode permettant de faire léviter un objet en le faisant reposer sur un champ magnétique. Les forces magnétiques appliquées à cet objet s'opposent ainsi à l'action de son propre poids, empêchant sa chute. Il existe deux concepts fondamentaux concernant la physique et les propriétés de lévitation de la matière : le concept électromagnétique (EML) : la lévitation est générée par des électroaimants régulés.
Dopage (semi-conducteur)Dans le domaine des semi-conducteurs, le dopage est l'action d'ajouter des impuretés en petites quantités à une substance pure afin de modifier ses propriétés de conductivité. Les propriétés des semi-conducteurs sont en grande partie régies par la quantité de porteurs de charge qu'ils contiennent. Ces porteurs sont les électrons ou les trous. Le dopage d'un matériau consiste à introduire, dans sa matrice, des atomes d'un autre matériau. Ces atomes vont se substituer à certains atomes initiaux et ainsi introduire davantage d'électrons ou de trous.
Paradoxe de l'informationEn astrophysique, le paradoxe de l'information est un paradoxe mis en évidence par Stephen Hawking en 1976 opposant les lois de la mécanique quantique à celles de la relativité générale. En effet, la relativité générale implique qu'une information pourrait fondamentalement disparaître dans un trou noir, à la suite de l'évaporation de celui-ci. Cette perte d'information implique une non-réversibilité (un même état peut être issu de plusieurs états différents), et une évolution non unitaire des états quantiques, en contradiction fondamentale avec les postulats de la mécanique quantique.
Magnetic semiconductorMagnetic semiconductors are semiconductor materials that exhibit both ferromagnetism (or a similar response) and useful semiconductor properties. If implemented in devices, these materials could provide a new type of control of conduction. Whereas traditional electronics are based on control of charge carriers (n- or p-type), practical magnetic semiconductors would also allow control of quantum spin state (up or down).
Automate finithumb|upright=2|Fig. 1 : Une hiérarchie d'automates. Un automate fini ou automate avec un nombre fini d'états (en anglais finite-state automaton ou finite state machine ou FSM) est un modèle mathématique de calcul, utilisé dans de nombreuses circonstances, allant de la conception de programmes informatiques et de circuits en logique séquentielle aux applications dans des protocoles de communication, en passant par le contrôle des processus, la linguistique et même la biologie.
Trou noiralt=|vignette|Le disque d'accrétion du trou noir M87* imagé par l'en. Le trou noir lui-même est invisible, au centre de la zone noire centrale. En astrophysique, un trou noir est un objet céleste si compact que l'intensité de son champ gravitationnel empêche toute forme de matière ou de rayonnement de s'en échapper. De tels objets ne peuvent ni émettre, ni diffuser la lumière et sont donc noirs, ce qui en astronomie revient à dire qu'ils sont optiquement invisibles.
Principe holographiquevignette|Cette image est une reconstruction assez fidèle d'une image du collecteur de Calabi-Yau qui apparaît comme une figure dans l'article : Leonard Susskind (novembre 2003). "Superstrings (Features : November 2003)". Physics World 16 (11). En physique théorique, le principe holographique est une conjecture spéculative dans le cadre de la théorie de la gravité quantique, proposée par Gerard 't Hooft en 1993 puis améliorée par Leonard Susskind en 1995. Son nom métaphorique vient de l'analogie avec l'holographie.