Publication

Gaussian mixture models for on-line signature verification

Jonas Richiardi, Andrzej Drygajlo
2003
Article de conférence
Résumé

This paper introduces and motivates the use of Gaussian Mixture Models (GMMs) for on-line signature verification. The individual Gaussian components are shown to represent some local, signer-dependent features that characterise spatial and temporal aspects of a signature, and are effective for modelling its specificity. The focus of this work is on automated order selection for signature models, based on the Minimum Description Length (MDL) principle. A complete experimental evaluation of the Gaussian Mixture signature models is conducted on a 50-user subset of the MCYT multimodal database. Algorithmic issues are explored and comparisons to other commonly used on-line signature modelling techniques based on Hidden Markov Models (HMMs) are made.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.