Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Markov chains that describe interacting subsystems suffer from state space explosion but lead to highly structured matrices. In this work, we propose a novel tensor-based algorithm to address such tensor-structured Markov chains. Our algorithm combines a tensorized multigrid method with AMEn, an optimization-based low-rank tensor solver, for addressing coarse grid problems. Numerical experiments demonstrate that this combination overcomes the limitations incurred when using each of the two methods individually. As a consequence, Markov chain models of unprecedented size from a variety of applications can be addressed.
Ali H. Sayed, Mert Kayaalp, Stefan Vlaski, Virginia Bordignon
Francisco Santos Paredes Quartin de Macedo
Fabio Nobile, Juan Pablo Madrigal Cianci