Signature numériqueLa signature numérique est un mécanisme permettant d'authentifier l'auteur d'un document électronique et d'en garantir la non-répudiation, par analogie avec la signature manuscrite d'un document papier. Elle se différencie de la signature écrite par le fait qu'elle n'est pas visuelle, mais correspond à une suite de caractères. Elle ne doit pas être confondue avec la signature électronique manuscrite. Un mécanisme de signature numérique doit présenter les propriétés suivantes : Il doit permettre au lecteur d'un document d'identifier la personne ou l'organisme qui a apposé sa signature (propriété d'identification).
Electronic signatureAn electronic signature, or e-signature, is data that is logically associated with other data and which is used by the signatory to sign the associated data. This type of signature has the same legal standing as a handwritten signature as long as it adheres to the requirements of the specific regulation under which it was created (e.g., eIDAS in the European Union, NIST-DSS in the USA or ZertES in Switzerland). Electronic signatures are a legal concept distinct from digital signatures, a cryptographic mechanism often used to implement electronic signatures.
Markov modelIn probability theory, a Markov model is a stochastic model used to model pseudo-randomly changing systems. It is assumed that future states depend only on the current state, not on the events that occurred before it (that is, it assumes the Markov property). Generally, this assumption enables reasoning and computation with the model that would otherwise be intractable. For this reason, in the fields of predictive modelling and probabilistic forecasting, it is desirable for a given model to exhibit the Markov property.
Chaîne de Markovvignette|Exemple élémentaire de chaîne de Markov, à deux états A et E. Les flèches indiquent les probabilités de transition d'un état à un autre. En mathématiques, une chaîne de Markov est un processus de Markov à temps discret, ou à temps continu et à espace d'états discret. Un processus de Markov est un processus stochastique possédant la propriété de Markov : l'information utile pour la prédiction du futur est entièrement contenue dans l'état présent du processus et n'est pas dépendante des états antérieurs (le système n'a pas de « mémoire »).
Modèle de Markov cachéUn modèle de Markov caché (MMC, terme et définition normalisés par l’ISO/CÉI [ISO/IEC 2382-29:1999]) — (HMM)—, ou plus correctement (mais non employé) automate de Markov à états cachés, est un modèle statistique dans lequel le système modélisé est supposé être un processus markovien de paramètres inconnus. Contrairement à une chaîne de Markov classique, où les transitions prises sont inconnues de l'utilisateur mais où les états d'une exécution sont connus, dans un modèle de Markov caché, les états d'une exécution sont inconnus de l'utilisateur (seuls certains paramètres, comme la température, etc.
Propriété de Markovvignette|Exemple de processus stochastique vérifiant la propriété de Markov: un mouvement Brownien (ici représenté en 3D) d'une particule dont la position à un instant t+1 ne dépend que de la position précédente à l'instant t. En probabilité, un processus stochastique vérifie la propriété de Markov si et seulement si la distribution conditionnelle de probabilité des états futurs, étant donnés les états passés et l'état présent, ne dépend en fait que de l'état présent et non pas des états passés (absence de « mémoire »).
Modèle de mélangeIn statistics, a mixture model is a probabilistic model for representing the presence of subpopulations within an overall population, without requiring that an observed data set should identify the sub-population to which an individual observation belongs. Formally a mixture model corresponds to the mixture distribution that represents the probability distribution of observations in the overall population.
Markov information sourceIn mathematics, a Markov information source, or simply, a Markov source, is an information source whose underlying dynamics are given by a stationary finite Markov chain. An information source is a sequence of random variables ranging over a finite alphabet , having a stationary distribution. A Markov information source is then a (stationary) Markov chain , together with a function that maps states in the Markov chain to letters in the alphabet .
Longueur de description minimaleLa longueur de description minimale ou LDM (MDL pour Minimum Description Length en anglais) est un concept inventé par Jorma Rissanen en 1978 et utilisé en théorie de l'information et en compression de données. Le principe est basé sur l'affirmation suivante : toute régularité dans un ensemble de données peut être utilisée afin de compresser l'information, c'est-à-dire l'exprimer à l'aide d'un nombre réduit de symboles. Théorie de l'information Jorma Rissanen, « Modeling by shortest data description », Automatica, vol 14, No 5, pp.
Minimum message lengthMinimum message length (MML) is a Bayesian information-theoretic method for statistical model comparison and selection. It provides a formal information theory restatement of Occam's Razor: even when models are equal in their measure of fit-accuracy to the observed data, the one generating the most concise explanation of data is more likely to be correct (where the explanation consists of the statement of the model, followed by the lossless encoding of the data using the stated model).