Statistical assumptionStatistics, like all mathematical disciplines, does not infer valid conclusions from nothing. Inferring interesting conclusions about real statistical populations almost always requires some background assumptions. Those assumptions must be made carefully, because incorrect assumptions can generate wildly inaccurate conclusions. Here are some examples of statistical assumptions: Independence of observations from each other (this assumption is an especially common error). Independence of observational error from potential confounding effects.
Statistical theoryThe theory of statistics provides a basis for the whole range of techniques, in both study design and data analysis, that are used within applications of statistics. The theory covers approaches to statistical-decision problems and to statistical inference, and the actions and deductions that satisfy the basic principles stated for these different approaches. Within a given approach, statistical theory gives ways of comparing statistical procedures; it can find a best possible procedure within a given context for given statistical problems, or can provide guidance on the choice between alternative procedures.
Global Forecast Systemvignette|Exemple de carte produite par le GFS, prévision des isohypses de géopotentiel et des isothermes de température à la pression de dans l'atmosphère, le tout valide 96 heures après le moment d’initialisation Le Global Forecast System (GFS) est un modèle de prévision numérique du temps du National Weather Service des États-Unis. Comme son nom l'indique, il fait ses calculs en utilisant les données météorologiques sur une grille qui recouvre toute la Terre. Ce modèle numérique est initialisé quatre fois par jour : 5h30, 11h30, 17h30 et 23h30.
Inférence statistiquevignette|Illustration des 4 principales étapes de l'inférence statistique L'inférence statistique est l'ensemble des techniques permettant d'induire les caractéristiques d'un groupe général (la population) à partir de celles d'un groupe particulier (l'échantillon), en fournissant une mesure de la certitude de la prédiction : la probabilité d'erreur. Strictement, l'inférence s'applique à l'ensemble des membres (pris comme un tout) de la population représentée par l'échantillon, et non pas à tel ou tel membre particulier de cette population.
Prévision numérique du tempsLa prévision numérique du temps (PNT) est une application de la météorologie et de l'informatique. Elle repose sur le choix d'équations mathématiques offrant une proche approximation du comportement de l'atmosphère réelle. Ces équations sont ensuite résolues, à l'aide d'un ordinateur, pour obtenir une simulation accélérée des états futurs de l'atmosphère. Le logiciel mettant en œuvre cette simulation est appelé un modèle de prévision numérique du temps.
Assimilation de donnéesEn météorologie, l'assimilation de données est le procédé qui consiste à corriger, à l'aide d'observations, l'état de l'atmosphère d'une prévision météorologique. La prévision numérique de l'évolution de l'atmosphère dépend grandement des conditions initiales qui lui sont fournies. Or il est difficile de déterminer, à un instant donné, l'état de l'atmosphère, c’est-à-dire l’ensemble des variables atmosphériques (pression, température, humidité, etc.) sur l’ensemble du volume, avec une bonne résolution et une bonne précision.
Processeur vectorielvignette|Processeur vectoriel d'un supercalculateur Cray-1. Un processeur vectoriel est un processeur possédant diverses fonctionnalités architecturales lui permettant d'améliorer l’exécution de programmes utilisant massivement des tableaux, des matrices, et qui permet de profiter du parallélisme inhérent à l'usage de ces derniers. Développé pour des applications scientifiques et exploité par les machines Cray et les supercalculateurs qui lui feront suite, ce type d'architecture a rapidement montré ses avantages pour des applications grand public (on peut citer la manipulation d'images).
Gather/scatter (vector addressing)Gather/scatter is a type of memory addressing that at once collects (gathers) from, or stores (scatters) data to, multiple, arbitrary indices. Examples of its use include sparse linear algebra operations, sorting algorithms, fast Fourier transforms, and some computational graph theory problems. It is the vector equivalent of register indirect addressing, with gather involving indexed reads, and scatter, indexed writes. Vector processors (and some SIMD units in CPUs) have hardware support for gather and scatter operations.